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Abstract

Biomedical literature plays a crucial role for scientific knowledge acquisition. However, the vast volume
of biomedical literature presents significant challenges in efficiently locating and extracting the needed in-
formation. Biomedical natural language processing (BioNLP) techniques, which facilitate quick processing
of large-scale biomedical texts, becomes increasingly important to address this challenge. Most existing
BioNLP works focus on extracting biomedical knowledge in the form of named entities or entity relation-
ships from literature, but overlooking the argument roles—such as hypothesis and novel findings—played
by the entities and their relationships in the paper. These argument roles could influence the extracted
knowledge reliability (e.g. hypothesis) and interpretability. Therefore, biomedical argument mining, as the
process of automatic identification and analysis of arguments within biomedical literature, should receive
more attention to advance knowledge interpretation and extraction. Recent advancements in large language
models (LLMs) have opened new opportunities for biomedical argument mining with their strong abilities
in understanding complex semantic dependencies from text. This thesis explores how to leverage LLMs
to advance biomedical argument mining. Three specific challenges in the field are analyzed: extracting
rhetorical roles for sentences in biomedical abstracts, contextualizing claims through understanding of study
limitations, and claim extraction within a rich context.
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Chapter 1

INTRODUCTION

In the current era of biomedical research, scientific literature serves as a cornerstone for knowledge ac-
quisition [1]. The term "biomedical literature" broadly covers various publications, including clinical trial
reports, case reports, and systematic reviews. These publications play an important role in advancing sci-
entific discoveries, guiding clinical practice, and supporting evidence-based decision-making. For example,
drug discovery can be supported by biomedical research on the underlying mechanisms of diseases [2]; the
integration of clinical trial results with related case reports can enhance the efficacy of clinical treatments
in practice [3]; systematic reviews help systematically identify, assess, and summarize the current state of
research topics [4].

Biomedical literature is an important resource for scientific tasks, but it is challenging to extract task-
relevant information from the large-scale data. The PubMed database, a central repository for biomedical
and life sciences publications, has indexed over 38 million articles and continues to grow by approximately
1 million articles every year [5]. Quickly pinpointing the relevant publication from this vast and continually
expanding collection is challenging. Additionally, the average length of the body text in a biomedical article
is 2,378 words [6], with much of it unrelated to specific tasks, making it even more difficult to efficiently
locate the needed information.

Given the challenges of pinpointing knowledge from the vast volume of biomedical literature, natural
language processing (NLP) techniques have become increasingly important to automatically extract knowl-
edge [7]. First, NLP methods streamline information retrieval, enabling stakeholders to quickly access
relevant studies and reducing the time and effort required for decision-making [8]. Additionally, automated
methods enable the quick overview of biomedical publications at large scale, uncovering the hidden trends
of a research topic (e.g. identify trends in methodology reporting [9]).

Existing studies have extensively analyzed challenges in biomedical literature processing that can be
addressed using NLP methods. We refer to the application of NLP methods in biomedical text processing
as Biomedical Natural Language Processing (BioNLP) in this thesis. In the paradigm of classical machine
learning, lexical features (e.g., word counting, n-grams), syntactic structures (e.g., part-of-speech tagging),
and task-specific metadata (e.g., MeSH terms, ontologies) were used as features for models such as SVMs
and logistic regression (e.g., drug discovery [10] and disease prediction [11]). However, these explicitly cre-
ated features could not capture complex sequential patterns in the data [12]. Next, the development of
deep neural networks, such as RNNs and LSTMs, has enabled the direct processing of raw sequential data
without manual selection of features (e.g., [13]–[18]). However, these methods struggle with long-distance
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implicit semantic information extraction due to the vanishing gradient problem [19], [20]. Then the develop-
ment of transformers with the self-attention mechanism has enabled capturing of long-range dependencies,
assigning weights according to the importance of every word in a sequence, regardless of distance [20]. Early
transformer-based models, such as BERT [21] and its biomedical adaptation PubMedBERT [22], brought sig-
nificant advancements in biomedical NLP tasks, such as text classification and named entity recognition [23]–
[25]. However, these models had relatively few parameters and limited scalability, and their performance still
highly depends on the quality and availability of human-annotated training data [26], [27]. Moving forward,
methods that enable deeper and more implicit semantic understanding beyond annotated labels are crucial
for further progress in BioNLP.

Named Entity Recognition (NER) and Relation Extraction (RE) are the main areas of interest for BioNLP
researchers, given their fundamental role in structuring biomedical knowledge and supporting downstream
applications [24], [28], [29]. However, existing automated NER and RE methods primarily extract explic-
itly stated factual knowledge while overlooking argument structure and contextual factors that influence
knowledge interpretation. Therefore, entities and their relationships are identified without considering their
roles within the context, such as background details, experimental context, or novel findings. The extracted
entities and relationships might be insufficient for downstream applications. For example, protein-disease
relationships derived from hypothesis sentences in biomedical literature should not be treated as reliable
knowledge, as relying on such information in decision-making may pose risks [30].

Given the importance of understanding argument structure in knowledge interpretation, argument min-
ing - defined as the automatic identification and analysis of arguments in text, such as claim extraction,
claim verification, and understanding of reasoning steps - becomes a crucial area for advancing knowledge
extraction [31], [32]. Several studies have explored biomedical argument mining from different aspects. For
claim extraction, existing research has focused on automatically identifying explicit claims by leveraging
lexico-syntactic features (e.g. dependency grammar labels and symbols indicating upward or downward
trends) to enhance the scientific communication [33]–[35]. In claim verification, studies have explored how to
retrieve claim-related evidence from reliable sources to assess factuality of claims [36], [37]. Regarding argu-
ment structure identification, researchers have analyzed extracting the rhetorical roles of sentences within a
sequence, using frameworks like BOMRC (Background, Objective, Methods, Results, and Conclusions) [38]–
[41].

Though explorations have been made, argument mining in biomedical literature is still an underexplored
area with several gaps. From the perspective of specific argument mining tasks, firstly, claim extraction could
expand beyond explicit sentence-level claims to include implicit ones that may span multiple sentences [42].
Moreover, claim verification tasks could be improved by extracting both the evidence sentences from reliable
sources and the contextual information surrounding the evidence to improve evidence interpretation [43].
Additionally, argument structure detection should consider the cases where a single textual pattern serves
multiple argument roles [31]. From the perspective of general argument mining problems, establishing gold
standards for argument mining datasets is always challenging due to the complexity and diversity of language
in biomedical literature [44]. The use of specialized terminology, implicit relationships between concepts,
and varied writing styles, makes it difficult to decide the dependencies and separate the argument patterns.
Furthermore, annotating argument components in lengthy texts requires annotators to thoroughly read and
fully comprehend entire documents, which is time- and resource-consuming [45].

In recent years, the development of large language models (LLMs) brought new opportunities for argument
mining [46]. LLMs possess strong generalization and in-context learning abilities to adapt to a task with no
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or few task-specific training examples. With the appropriate prompt design, the LLMs could be guided to
understand and effectively perform the specific argument extraction requirements [47]. Additionally, LLMs’
natural language understanding and reasoning ability enable them to effectively identify the argument flow
and implicit relationships over long sequential textual patterns, which could be applied to improve argument
mining tasks [48]–[50]. Given these properties of LLMs, it is worth to further explore the application of
LLMs on biomedical argument mining.

In this thesis, I aim to explore the potential advancements brought with LLMs to address the challenges
related to argument mining in biomedical literature.

1.1 Statement of the Problems and Study Purposes

This thesis explores the potential advancements introduced by LLMs to biomedical argument mining through
analyzing three challenges in the field. The first challenge arises from the complexity of understanding of
argument structures within a given context, as the dependencies between different textual components are
intricate. The second challenge relates to the study limitations under which the claims are made, as the
certainty and generalizability of the claims could be influenced by the study limitations mentioned in the
literature. The third challenge regards accurately interpreting claims within a rich context, as surrounding
contextual information can influence the claim’s interpretation. Detailed explanations of each challenge and
how the studies could address these challenges are provided in the following subsections.

1.1.1 Intricate Biomedical Argument Structure

Argument structure refers to the way claims, premises, and reasoning components are organized within the
long text to form a coherent argument [51]. For biomedical argument structure analysis, the BOMRC argu-
ment framework (Background, Objective, Methods, Results, and Conclusions) is the main focus of researchers
due to its reasonable flow and logical order [38]. With the growing number of biomedical publications each
year, structuring complex paper content based on argument roles of textual patterns can be helpful to quickly
locate the needed information within the vast body of literature, and benefit the downstream tasks such as
fine-grained information retrieval [52] and extractive summarization [53]. For example, since main findings
are typically summarized in the conclusion sentences of scientific papers, focusing on these sentences can
enhance precise information retrieval [54].

Existing studies have used NLP techniques to extract the BOMRC argument structure from biomedical
abstracts. Recurrent neural networks (RNNs)-based methods followed a hierarchical structure: an encod-
ing layer to represent word tokens and embed sentences, followed by context interaction layers to enhance
sentence representation considering surrounding context, and finally the label optimization layer to generate
label output [13], [14], [16]–[18], [55]–[57]. Other works utilized the masked token objective of BERT [21], in-
troducing special token to encode contextual information, based on which to predict the argument labels [39].
Despite the progress, gaps remained in these studies. ANN-based methods struggle with information loss
problem when projecting the long context in a fixed-length vector, while BERT-based approaches are con-
strained by the 512-token input limit. Additionally, the existing methods rely on supervised learning, making
their performance dependent on the size and quality of annotated training data. Moreover, previous works
proposed single-label classification models, while no exploration has been made in multi-label classification
though that is essential since a sentence can serve multiple rhetorical roles within context [58].
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The goal of this study is to utilize LLMs to bridge the gaps with the current biomedical argument structure
extraction tasks, including information loss, context length constraint, reliance on human-annotated data,
and the need for multi-label classification paradigm. It explores the question: How to leverage LLMs to
address the current gaps in biomedical argument structure extraction?

1.1.2 Contextualizing Biomedical Claims through Understanding of Study Lim-
itations

Claims made in biomedical literature are conditioned on the factors such as the study background, experi-
mental methods, underlying assumptions, and other elements that can impact the results. The limitations
within these factors would weaken the strength of the claims made based on them. For example, if a paper
that acknowledges the limitation of a small sample size in experiments, as in "our study had a small sample
size", the strength of the claims made in this paper would be constrained [59]. Therefore, before accepting
a claim, it is important to consider the limitations of the context based on which the claim was made, many
of which may be self-identified by the authors in their publications [60].

Existing works have explored self-acknowledged limitations (SALs) from quantitative and qualitative as-
pects in randomized controlled trials (RCTs) publications, an important subcategory of biomedical literature
that reports experiment results comparing the effects of different treatments or interventions. A quantitative
analysis showed that approximately 73% of RCTs articles report SALs [61], indicating that direct extraction
of SALs from RCTs articles is feasible. The qualitative analysis categorized SALs mentioned in RCTs articles
into hierarchical levels, with top-level categories such as "Sample Size", which further includes second-level
categories like "Recruitment Less Than Expected" and "Convenience Sampling" under the Sample Size cat-
egory [62]. This structure provides a detailed analysis of the content and nature of the SALs. Automated
tools have been built to capture the existence of SALs from the RCT articles [60]. However, no exploration
has been made to build the automated SALs categorization tool. To gain a deeper understanding of the
specific aspects that constrain the strength of claims from RCT articles, it is essential to create SALs type
datasets, based on which to build automated tools and capture the types and detailed contents in SALs.

The goal of this study is to develop supervised models tuned with LLM-augmented datasets for classifying
SALs, addressing the gap in facilitating a deeper understanding of specific weaknesses in study claims. It
explores the question: How can we effectively classify study limitations in RCTs?

1.1.3 Context-dependent Biomedical Claim Interpretation

In knowledge-driven natural language understanding tasks, such as biomedical fact checking where evidence
sentences are extracted from reliable sources to confirm or refute a claim, the extracted sentences are orig-
inally embedded in nuanced contexts that might influence their interpretation [43]. For instance, consider
the claim: "Toxic algae can affect the nervous system, liver, and kidney in humans and animals." With-
out contextual information, the term "toxic algae" is overly broad, implying that any algae classified as
"toxic" would support the claim. However, examining the surrounding context-such as "blue-green algae is
poisonous"-makes it clear that "blue-green algae" definitely satisfies the claim. Therefore, it is essential to
extract sentences along with their relevant context to make the extracted knowledge interpretable.

Explorations in enhancing knowledge representation by incorporating relevant contextual information into
extracted sentences (defined as "decontextualization" by previous work [43]) have advanced in the general
domain, but several gaps remain. Supervised methods relied on the manually curated dataset to fine-tune
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seq2seq models [43]. However, the dataset was shaped by annotator’s subjective judgments, limiting models’
ability to address complex contextual variations. Unsupervised methods leveraging LLM inference [63]–[65]
have been explored under different decontextualization settings but either failing to preserve the original
sentence meaning or introducing external knowledge beyond the surrounding context of the target sentence.
Moreover, these existing works have focused on the general domain, while decontextualization in the biomed-
ical domain is unexplored.

The goal of this study is to develop automated tools for incorporating relevant contextual information
using LLMs to bridge existing gaps in the field, with a specific focus on textual data from the biomedical
domain. It seeks to answer the question: How can LLMs be leveraged to enhance decontextualization for
extracted sentences from biomedical literature?

1.2 Structure of the Proposal

In this thesis, Chapter 2 discusses the work on LLM-supported biomedical argument structure extraction,
Chapter 3 presents classification of SALs from biomedical literature using automated tools trained on LLM-
augmented dataset, and Chapter 4 explores how to improve the interpretation of extracted biomedical
sentences within context using LLMs. Finally, Chapter 5 outlines the timeline for completing the remaining
tasks in each of the three topics.
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Chapter 2

Multi-label Sequential Sentence
Classification via Large Language
Models

This chapter has been adapted from: Lan, M., Zheng, L., Ming, S., & Kilicoglu, H. (2024, November).
Multi-label Sequential Sentence Classification via Large Language Model. In Findings of the Association
for Computational Linguistics: EMNLP 2024 (pp. 16086-16104). My contribution to the study are (in the
format of CRediT taxonomy): conceptualization, formal analysis, data curation, investigation, methodology,
software, validation, visualization, writing-original draft, writing-review & editing.

2.1 Introduction

With the increasing number of published biomedical scientific papers today, researchers face significant
challenges in quickly pinpointing needed information. To address this problem, organizing complex paper
content according to the argument roles of each sentence in a structured format has garnered interest [59],
[66], [67]. Since the roles of each sentence are often informed by the context from neighboring sentences,
this task is referred to as sequential sentence classification (SSC) [39]. SSC can enable the fine-grained
information retrieval [68], enhance extractive summarization [53], and improve other downstream tasks. For
example, labeling objective sentences in biomedical abstracts can support information retrieval based solely
on the papers’ objectives.

Existing studies have explored SSC using contextualized language representations. Artificial neural net-
work (ANN)-based SSC methods typically follow a hierarchical structure: an encoding layer to represent
word tokens and embed sentences, a context interaction layer to enhance sentence embedding with sur-
rounding context, and a labeling optimization layer to produce optimized sequential labels [13]–[18], [56],
[57]. Other research utilizes the masked token objective or transformers, introducing special tokens to encode
contextual information and using these tokens to predict sequential labels [39].

Despite promising progress in the SSC task in biomedical domain, several gaps remain, including pre-
trained model size, input sequence length, multi-label annotation, and dataset creation. Specifically, cur-
rent ANN- and transformer-based methods have only employed moderately sized pretrained models (e.g.,
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word2vec [14], SciBERT [39], [56]), while the application of large language models (LLMs) in SSC is un-
derexplored. Furthermore, the existing transformer-based methods rely on BERT, which is constrained by
512-token sequence length limit [39]. Additionally, SSC has not expanded from single-label to multi-label,
which is essential since a sentence can serve multiple rhetorical roles within a context [58]. Moreover, the
widely used SSC dataset in the biomedical field, PubMed 200K RCT, is automatically generated from struc-
tured abstracts in PubMed [38]. However, this dataset does not include unstructured abstracts with free-form
writing styles, which may deviate from the common patterns found in structured abstracts [16], [39].

To bridge these gaps, this chapter explores the application of LLMs in multi-label SSC using manually
created datasets from biomedical domain. We propose LLM-SSC, a novel unified framework for in-context
learning and parameter-efficient finetuning (PEFT) using Gemma-2b [69] for this task. Unlike existing
approaches that create contextual representations of sequential sentences, LLM-SSC leverages LLMs to
generate SSC labeling results based on designed prompts, which include a demonstration part to showcase the
task and a query part to introduce the prediction target. To address the challenge of multi-label annotation,
we design an auto-weighting multi-label contrastive learning loss that relaxes the constraint of formation of
positive and negative pairs in the contrastive learning and reweights the importance of positive and negative
pairs based on their label information.

Our contributions are as follows:

• We present LLM-SSC, the first LLM-based framework supporting both single- and multi-label SSC
that integrates complete contextual information within the prompt and consider neighboring context
when making predictions.

• We propose a novel multi-label contrastive learning loss with auto-weighting scheme to reweight the
importance of negative pairs.

• We introduce and release biorc800, a manually annotated multi-label SSC dataset mainly using un-
structured abstracts from the biomedical field using rhetorical labels (Background, Objective, Methods,
Results, Conclusions, and Other).

• Extensive experiments demonstrate the strong capability of LLM-SSC in SSC tasks under both in-
context learning and parameter-efficient finetuning settings.

2.2 Related Works

SSC datasets SSC datasets are from various domains. PubMed 20k RCT [70] and NICTA-PIBOSO [71]
are two datasets generally used in biomedical domain. csabstruct [39] and cs-abstracts [16] are datasets
utilizing abstracts from computer science papers. Emerald 100k [72] and MAZEA [73] contains samples
from multiple domains. In addition to these abstract-based datasets, some others use the full paper, such
as Dr. Inventor [74] collecting samples from the computer graphics domain and ART-CoreSC [75] from
physics, chemistry, and biochemistry domains.

SSC methods Before the deep learning paradigm, traditional machine learning algorithms were applied
to SSC [76], [77]. These methods rely on hand-selected features and the classification performance is lim-
ited to the annotation amount and quality [57]. Inspired by transfer learning and deep learning bringing
pre-learned knowledge from external large datasets and simulating human-like thinking, recent SSC works
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leverage neural networks [13], [14], [18], [56], [57]. The current SoTA methods commonly follow a hierar-
chical framework [57], including an encoding layer to represent word tokens (e.g. Word2Vec [78]) or embed
sentences (e.g., CNN [79]), followed by a context interaction layer to enrich the embedding using the sur-
rounding context (e.g. Bi-LSTM [18]), and a labeling optimization layer to output the optimized sequential
labels (e.g. CRF [17]). In addition to the hierarchical framework, a BERT-based work leverages the BERT
self-attention mechanism to handle the variable-length text by attending to features in context [39].

Supervised Contrastive Learning with LLMs Contrastive learning objectives could be widely applied
in supervised LLM tasks. In text classification, these objectives enhance performance by providing a clearer
understanding of class boundaries [80]–[82]. For named entity recognition, leveraging labeled entity types to
create positive and negative pairs helps the model distinguish between different entities more effectively [83]–
[85]. In semantic similarity evaluation, supervised contrastive learning improves the model’s ability to
recognize subtle semantic differences, thereby boosting task performance [86], [87].

2.3 Methods

In this section, we first introduce the notation and then present LLM-SSC, an LLM-based framework for
sequential sentences in-context learning and parameter-efficient finetuning, integrating complete contextual
information within the prompt and consider neighboring context when making predictions. To enable the
multi-label classification, we propose auto-weighting multi-label contrastive learning loss. The overview of
the proposed framework is shown in Figure 2.1.

2.3.1 Notation

We approach SSC as a task of conditional text generation. Specifically, for an SSC dataset with S text
sequences, we denote Si as the ith text sequence, Sij as the jth sentence in Si, Ci as the context where the
sentence is located (Ci = concat(Si1, Si2, ...Sin)), and Yij as the SSC label of Sij . Our goal is to model the
probability of generating the SSC label Yij .

2.3.2 In-context Learning

We utilize in-context learning to leverage the power of LLMs for this task. An overview of the ICL framework
is provided in Figure 2.1. A prompt is created by combining a demonstration context with a query, which is
then fed into the language model to generate the prediction. The demonstration samples are selected from
the training set based on cosine similarity scores between the training samples and the prediction target
sentence. These similarity scores are calculated using embeddings generated by the SimCSE pre-trained
model [86]1. Given a demonstration sample Di, the label Yi for the ith sentence in Di, and the set of
rhetorical label candidates U , the demonstration part of the prompt Dprompt is constructed as:

<Start>The paragraph is [Di]. Select from rhetorical labels including [U ], the sentence [Di1] plays a
rhetorical role as <[Yi1]>, the sentence [Di2] plays a rhetorical role as <[Yi2]>, ..., the sentence [Din] plays
a rhetorical role as <[Yin]><End>.

Then we create the query part of prompt. Given the prediction target sentence Sij and the context Ci

where the target sentence is located, the query portion of the prompt Qprompt is formatted as:
1https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
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Figure 2.1: Structure of our LLM-based in-context learning and finetuning for SSC.

<Start>The paragraph is [Ci]. Select from rhetorical labels including [U ], the sentence [Sij] plays a
rhetorical role as

The input prompt is constructed by combining the demonstration Dprompt and query Qprompt:

XICL = Dprompt||Qprompt (2.1)

The goal for in-context learning is to generate the SSC label Ypredict given the input prompt XICL:

Ypredict = argmax
Y

P (Y |XICL) (2.2)

where Ypredict denotes the generated label that maximizes the conditional probability given the input prompt
XICL. P (Y |XICL) denotes the conditional probability of generating outcome Y given the prompt XICL.

2.3.3 Task-specific Model Tuning

Although LLMs can recognize SSC labels using ICL due to their generalization ability without any parameter
tuning, ICL underperforms the fine-tuning methods in text classification tasks [88]–[90]. To further explore
the LLM application in SSC, we design a parameter-efficient fine-tuning framework of LLM. Figure 2.1
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presents an overview of the fine-tuning framework.
Supervision with Demonstration. To bridge the gap between the pretrained model’s original objec-

tive of predicting the next token and the goal of SSC to have the model generate the specific label for the
classification target, we include one SSC demonstration within the input to guide the model’s response. The
format of the demonstrations and queries used in fine-tuning prompts Xfinetune is the same as that used
in ICL (as described in Subsection 2.3.2). The tuning process modifies how the model adjusts the given
demonstration and query within the prompt to generate appropriate token sequence t̂:

t̂ = argmax
t

P (t|Xfinetune) (2.3)

t̂ = {t1, t2, ..., ti, ...} (2.4)

where ti denotes the hidden state of the ith token in the generated sequence.
Think Before Speak. Previous research found that giving space for the LLM model to produce

additional tokens (delays) before generating the expected answer shows performance gains across various
downstream tasks [91]. In our preliminary analysis, we observe a similar phenomenon. When employing the
ICL approach outlined in Subsection 2.3.2, the model does not immediately generate the expected SSC label
but first produces tokens not present in the label set. Motivated by this finding, we design the space-thinking
mechanism [91] to provide some space for LLM to think before generating the expected answer.

The space-thinking mechanism requires LLM to generate the next n tokens after the prompt using greedy
search. We assume that the predicted results are contained within one or more of these generated tokens.
Therefore, we create a verbalizer to map the multiple generated tokens to the label space by concatenating
the hidden states from the last layer of the generated tokens and feeding the combined results into a two-layer
MLP. Specifically, given the prompt Xfinetune, the next n token hidden states after the input context are
generated as in Equation 2.3 and concatenated:

ei = concat(t1, t2, ..., tn) (2.5)

Then a two-layer MLP is applied to map the concatenated representation to the label space:

hi = ReLU(w1ei + b1) (2.6)

pi,predict = σ(w2hi + b2) (2.7)

We use the cross entropy loss to compare the difference between the prediction probability pi,predict and the
golden standard yi,gold for the i-th sequence, where N denotes the number of classes:

LCrossEntropy = −
N∑
i=1

yi,gold log(pi,predict) (2.8)

Parameter-efficient Fine-tuning. Instead of fine-tuning all model parameters, we leverage low-rank
adaptation (LoRA) method to tune the LLM in a parameter-efficient way [92]. LoRA keeps the pre-trained
weights frozen and introduces trainable low-rank matrices in each layer of the transformer to approximate the
weight updates needed for fine-tuning. It helps to reduce the computational cost and increase the memory
efficiency during the tuning process.
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2.3.4 Auto-weighting Multi-label Contrastive Learning

Supervised Contrastive Learning [93] has been widely employed in fine-tuning language models [94]–[96].
These methods typically construct positive and negative pairs based on the equivalence of label vectors in
multi-class classification problems [97]. However, in the multi-label setting, treating two sentences with
the same label vector as a positive pair is impractical due to the exponential growth in the number of
unique label vectors with more labels (2m unique label vectors for m binary labels), resulting in a scarcity of
positive pairs for sentences with rare label vectors. In the worst-case scenario, it may be impossible to find
two sentences with identical label vectors, thereby hindering the formation of positive pairs for contrastive
learning. Additionally, minimizing the similarity of negative pairs in contrastive learning introduces the class
collision issue [98], [99], where sentences with similar label vectors are erroneously pushed apart in the latent
space, leading to sub-optimal solutions.

To address these issues, we propose an auto-weighting multi-label contrastive learning loss (WeighCon).
Instead of requiring identical label vectors for positive pairs, we relax this constraint by forming positive
pairs if two sentences share at least one common positive class. We introduce an auto-weighting scheme and
propose the following multi-label contrastive learning loss:

Lcon = −
m∑
c=1

EiEj∈Pi(c)
αijsim(hi, hj)∑

k(1− αik)sim(hi, hk)
(2.9)

αij = σ(MLP (yi, yj))

Here, sim(hi, hj) = exp(
hih

T
j

|hi||hj | ) is the exponential of the cosine similarity measurement, σ(·) is the sigmoid
function, m is the number of labels, and Pi(c) = {j|yi(c) = yj(c) = 1} represents the set of sentences with
the same cth label as the ith sentence. The weighting function αij , parameterized by a one-layer MLP, takes
two label vectors as input and outputs a scalar indicating the similarity between sentence representations hi

and hj . Intuitively, αij is large when yi and yj are similar, peaking when they are identical. To mitigate the
class collision issue, we use 1−αik to reweight the importance of negative pairs in the denominator of Eq. 2.9.
The weight (i.e., 1−αik) of a negative pair is large when label vectors differ significantly, decreasing as label
vectors become more similar. By reducing the weights of negative pairs with similar label vector, we mitigate
the negative impact of these negative pairs in minimizing the proposed contrastive loss. Furthermore, given
the complexity and large number of parameters of the LLM, we incorporate supervised contrastive learning
supported by a memory bank [100] into the training objective, thus reducing the memory requirement. The
final loss function for task-specific model tuning contains two items and LCon is weighted by a scaling factor
λ (default 0.1):

L = LCrossEntropy + λLCon (2.10)

2.4 Experiments

In this section, we first present the a new dataset named biorc800, a manually annotated multi-label SSC
dataset mainly using unstructured abstracts from the biomedical field. Then, we evaluate the effectiveness of
our proposed LLM-SSC by comparing it with state-of-the-art SSC methods and other contrastive learning
based regularization. Additionally, we experiment on in-context learning setting and conduct an ablation
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Number of
Structured Abstracts

Number of
Unstructured Abstracts

Label Distribution Average Sentences
per Abstracts

Average Tokens per
Sentence/AbstractLabel Distribution

Train 60 420

BACKGROUND
OBJECTIVE
METHODS
RESULTS
CONCLUSIONS
OTHER

805 (16.1%)
479 (9.6%)
1333 (26.6%)
1664 (33.2%)
654 (13.1%)
73 (1.5%)

9.86 22.94/225.19

Dev 20 140

BACKGROUND
OBJECTIVE
METHODS
RESULTS
CONCLUSIONS
OTHER

228 (13.2%)
184 (10.7%)
521 (30.3%)
528 (30.7%)
243 (14.1%)
17 (1.0%)

9.98 22.97/229.26

Test 20 140

BACKGROUND
OBJECTIVE
METHODS
RESULTS
CONCLUSIONS
OTHER

219 (13.3%)
164 (9.9%)
465 (28.1%)
565 (34.2%)
217 (13.1%)
22 (1.3%)

9.87 23.43/231.21

Total 100 700

BACKGROUND
OBJECTIVE
METHODS
RESULTS
CONCLUSIONS
OTHER

1252 (14.9%)
827 (9.9%)
2319 (27.7%)
2757 (32.9%)
1114 (13.3%)
112 (1.3%)

9.89 23.03/227.80

Table 2.1: biorc800 Detailed Statistics

study to further validate the assumptions outlined in the previous sections.

2.4.1 Datasets

Multi-label SSC Dataset: biorc800 To enhance our multi-label sequential sentence classification
(SSC) analysis and address the lack of manual SSC labels in unstructured biomedical texts, we manually an-
notated a corpus comprising 700 unstructured and 100 structured PubMed abstracts. Previous studies show
that though sentences of the structured abstracts have author-assigned rhetorical categories, the categories
might be erroneous [16], [39]. Therefore, we re-annotated those sentences from 100 structured abstracts
to more accurately reflect their category. The collected biomedical abstracts were sampled from PubMed
Central Open Access subset2 using a modified version of Cochrane’s sensitivity and precision-maximizing
query. The annotation utilized the multi-label approach and followed the annotation schema of Background,
Objective, Methods, Results, Conclusions, and Other.

We evaluated how consistently pairs of annotators agreed on sentence-level annotations using pairwise
κ [101] over several stages. In the first stage, four annotators, who are also experts in biomedical text
mining, used the first version of guideline to annotate the same 50 abstracts, with agreement scores between
pairs ranging from 0.757 to 0.856. After discussing challenges and updating the guidelines, the second stage
involved annotating a new set of 50 abstracts, improving the agreement scores to between 0.784 and 0.879.
In the third stage, after further discussions and guideline updates, the remaining 700 abstracts were divided
equally among the annotators. Finally, all 800 abstracts were combined, and one senior annotator reconciled
the final set of labels. Compared to the author-assigned labels for the 100 structured abstracts, our re-
annotation changed 4.1% sentence labels. We finally split the 800 abstracts into training (480 abstracts),
development (160), and test sets (160), keeping the proportion of structured vs. unstructured abstracts the
same in all three (12.5% - 87.5%). The descriptive statistics of biorc800 are shown in Table 2.1.

2https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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Single-label SSC Dataset In addition to the proposed biorc800 dataset, we test the models on the
following three datasets in our experiments:

CS-Abstract [16] contains 654 abstracts selected from computer science literature classified into
Background, Objective, Methods, Results, and Conclusions sentences. It is the most recently published
computer science RSC dataset annotated by crowdsourcing and collective intelligence3.

PubMed 20K RCT [38] contains 20k structured biomedical abstracts of randomized controlled trials
with sentences automatically classified based on the author-assigned annotations as background, objective,
method, result, or conclusion4.

ART-CoreSC [75] is a multi-domain dataset, containing sentence-level scientific discourse annotation
for 265 full papers selected from physics, chemistry, and biochemistry fields. For the current SSC evaluation,
we focus solely on the abstracts of these papers. In future work, we aim to extend the abstract-level SSC
to the full-text level. The sentences in abstracts are annotated as background, hypothesis, motivation,
objective, goal, methods, results, observation, experiment, or conclusion5.

2.4.2 Baselines

The SSC methods that achieved state-of-the-art performance on SSC datasets and had publicly accessible
code are selected as baselines for testing on our biorc800 dataset. To adapt these methods, which were
originally designed for single-label settings, to multi-label prediction, the code provided by the authors is
modified by applying a threshold of 0.4 (chosen empirically to balance precision and recall for each label) to
the output label probabilities.

Hierarchical Sequential Labeling Network (HSLN) [14] creates bi-RNN sentence representation, fol-
lowed by attention-based pooling and a bi-LSTM layer to add contextual information from surrounding
sentences. Finally, a CRF layer is concatenated to optimize the label sequence 6.

Sequential Sentence Classification (SSC) [39] employs BERT model [21] to encode both the semantics
of the target sentence and the sequence’s contextual information into a [SEP] token appended after the target
sentence. This [SEP] token acts as the target sentence’s representation, used to predict the rhetorical label7.

Scientific Discourse Tagging (SDT) [56] uses token embeddings from SciBERT [102], an LSTM layer
to encode sentences, and a bi-LSTM layer for sentence labeling, followed by a CRF layer with BIO tagging
scheme to optimize the order of sequence labels8.

SciBERT-HSLN [57] is built upon the HSLN model with SciBERT [102] as word embeddings9.

The multi-label contrastive learning baseline is also used to compare to WeightCon:
3https://github.com/sergiog95/csabstracts
4https://github.com/Franck-Dernoncourt/pubmed-rct/tree/master/PubMed_20k_RCT
5https://live.european-language-grid.eu/catalogue/corpus/972/download/
6https://github.com/jind11/HSLN-Joint-Sentence-Classification
7https://github.com/allenai/sequential_sentence_classification
8https://github.com/jacklxc/ScientificDiscourseTagging
9https://github.com/arthurbra/sequential-sentence-classification
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Dataset 0-shot 1-shot 5-shot 10-shot
Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

biorc800 0.476 0.322 0.642 0.507 0.733 0.656 0.159 0.068
CS-abstract 0.468 0.331 0.515 0.454 0.581 0.562 0.563 0.541

PubMed 20K RCT 0.171 0.131 0.642 0.546 0.712 0.659 0.579 0.528
ART-CoreSC 0.064 0.029 0.207 0.100 0.193 0.103 0.217 0.102

Table 2.2: In-context learning results with different number of demonstrations (shots).

HeroCon [98] is designed for multi-view and multi-label learning that applies weight to positive and
negative label pairs by hamming distance of two label representations10.

2.4.3 Experimental Setup

Implementation and Evaluation The Gemma-2b [69] model is selected as the backbone due to its
lightweight design and advanced performance across various natural language tasks. This model supports
an input sequence length of up to 8192 tokens, which is adopted as the maximum length for in-context
learning. For fine-tuning, however, we limit the sequence length to 1200 tokens, a value chosen empirically
to fit within the 40GB RAM of the GPU (experiments are performed on NVIDIA A100) and mitigate
excessive computational demands and high memory usage. If the input sequence length exceeds this limit,
the demonstration part of the input is removed and only the query part is used as input. To evaluate
the proposed in-context learning method, the training set samples are used as demonstrations and test set
samples as query. For validating the fine-tuning method, we tune the parameters on the training set, select
the best model on the validation set, and finally test and report the performance of the selected model on
the test set. PEFT 11 package is used to tune the model using LoRA. The default model is trained with the
AdamW optimizer with zero weight decay.

Thresholding When evaluating the proposed model on the multi-label dataset (biorc800), we apply
dynamic thresholding, which utilizes different probability thresholds for each label. The optimal threshold
for each label is determined by maximizing the label-specific F1 score on the validation set. For single-label
datasets, we apply softmax function to select the best label.

2.4.4 Results and Discussion

In-context Learning

In this subsection, we evaluate the model using 0-shot (no demonstrations in the prompt), 1-shot (one
demonstration), 5-shot, and 10-shot settings, where the shots are chosen from the training set using SimCSE
ranking, and the queries are from the test set. Table 2.2 presents the performance of our in-context learning
approach across all datasets. Specifically, we have the following observations: (1) LLM-SSC with 5-shot
setting achieves the highest micro F1 scores for biorc800, CS-abstract, and PubMed 20K RCT; (2)
in the zero-shot setting, in-context learning on biorc800 and CS-abstract datasets consisting of entire
paragraphs of unstructured text achieves micro F1 scores as 0.476 and 0.468, and macro F1 scores as 0.322
and 0.331. This demonstrates the large language model’s generative ability to recognize without seen any
training data; (3) the 0-shot in-context learning performance on PubMed 20K RCT is relatively poor, where

10https://github.com/Leo02016/HeroCon
11https://huggingface.co/docs/peft/en/index
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biorc800 CS-abstract PubMed 20K RCT ART-CoreSC

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

HSLN [14] 0.849 0.826 0.723 0.652 0.919 0.870 0.400 0.163

SSC [39] 0.905 0.892 0.780 0.714 0.924 0.859 0.470 0.253

SDT [56] - - 0.767 0.653 0.940 0.903 0.534 0.270

SciBERT-HSLN

[57]
0.902 0.897 0.765 0.712 0.931 0.882 0.467 0.246

LLM-SSC

with HeroCon

[98]
0.902 0.906 0.767 0.714 0.921 0.871 0.503 0.260

with WeighCon

(Ours)
0.907 0.912 0.768 0.716 0.925 0.879 0.524 0.282

Table 2.3: Task-specific model tuning results. In LLM-SSC, the next 2 tokens are generated. The SDT
model performance on biorc800 is not reported since it uses a BIO tagging mechanism to block different
rhetorical sections within a paragraph, making it unsuitable for multi-label classification.

sentences are organized by the original authors to meet specific structural requirements at the expense of
contextual dependence on each other; (4) the performance improvement from 0-shot to 1-shot emphasizes
the importance of including samples in the prompt for LLMs to understand SSC tasks; (5) when provided
with more samples (10-shots) on biorc800, CS-abstract, and PubMed 20K RCT, the performance are
not as good as with fewer examples. We attribute this drop to the additional information introducing bias
and confusing the large language model to capture the task-related features from the additional samples;
(6) the poor in-context learning results yielded on CoreSC can be attributed to the dataset’s fine-grained
rhetorical categories, which are challenging for large language models to recognize by simply relying on
general common-sense reasoning or surface-level patterns without more detailed guidelines.

Task-specific Model Tuning

Table 2.3 presents the performance of the task-specific model-tuning methods. Under the multi-label setting,
we observe: (1) our LLM-SSC with WeighCon achieves the highest micro and macro F1 scores (0.907 and
0.912, respectively) when tested on the biorc800 dataset; (2) compared to HeroCon, the proposed WeighCon
yields better performance, demonstrating its effectiveness with the auto-weighting design; (3) the SSC model
delivers the second-best micro F1 score (0.905), together with the proposed LLM-SSC, highlighting the
effectiveness of transformer-based methods in multi-label SSC; (4) although the SDT model achieves state-
of-the-art (SOTA) micro-F1 performance (i.e., 0.940) on the PubMed 20k RCT dataset, its BIO tagging,
which"blocks" different rhetorical sections in a paragraph, is not applicable to the multi-label setting.

On the single-labeled datasets, we find: (1) the LLM-based method delivers promising macro F1 results
(CS-abstract: 0.716, PubMed 20K RCT: 0.879, ART-CoreSC: 0.282), demonstrating its effectiveness
in balancing performance across classes. Unlike previous baseline methods that predict rhetorical labels
based on each sentence embedding, LLM-SSC leverages the contextual understanding ability of LLM to
grasp the whole context before generating the SSC label, therefore treating each class more equally; (2)
the micro F1 scores reveal that LLM-SSC’s sample-specific performance is near SOTA (CS-abstract:
0.768, PubMed 20K RCT: 0.925, ART-CoreSC: 0.524) but does not outperform the SOTA, indicating a
limitation in capturing the majority class compared to the fully fine-tuned baseline models.

Note that, different from the previous SOTA methods that tuned the parameters of the entire pre-trained
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model, LLM-SSC is tuned using LoRA, keeping the original model parameters frozen while updates about
4% additional parameters relative to the size of the entire LLM. 10,100,736 parameters are trainable, and
2,516,273,152 parameters are frozen. This approach significantly reduces storage requirements, as only the
task-specific additional parameters need to be stored.

Ablation Studies

Model
biorc800 CS-abstract

Micro F1 Macro F1 Micro F1 Macro F1

LLM-SSC 0.907 0.912 0.768 0.716

w/o

Demonstration
0.903 0.911 0.742 0.645

w/o

WeighCon
0.896 0.901 0.746 0.682

w/o

Space Thinking
0.892 0.899 0.749 0.685

Table 2.4: Ablation study.

We conduct ablation studies to assess the impact of various components of LLM-SSC when testing on
biorc800 and CS-abstract as shown in Table 2.4. Note that "w/o Space Thinking" refers to deleting
space thinking mechanism by enabling the LLM to generate only one token directly after the prompt.
For all four components, we observe the performance drops when each component is removed from LLM-

SSC, indicating that all four components in LLM-SSC contribute to SSC performance on both single- and
multi-label datasets. Note that the impact of each component is greater when the model is trained on
CS-Abstract compared to biorc800. CS-Abstract consists of 654 abstracts with an average of 7.23
sentences per abstract, while biorc800 contains 800 abstracts with an average of 9.89 sentences. The small
size of the CS-Abstract dataset limits the model’s performance, and adding three components mitigate
the limitation. In contrast, this improvement is less evident on the larger biorc800 dataset.

Think before Speak Analysis

Number of

Generated Tokens

biorc800 CS-abstract

Micro F1 Macro F1 Micro F1 Macro F1

1 0.897 0.904 0.749 0.685

2 0.907 0.912 0.768 0.716

3 0.895 0.904 0.739 0.686

Table 2.5: "Think before Speak" analysis results. Notice that generating the next one token equals to leaving
no space for model to think.

We analyze the "Think before Speak" mechanism to determine whether generating more tokens introduces
more bias or provides space for model to "think". Table 2.5 presents the performance of the model when
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generating one, two, and three subsequent tokens. The results show that generating two tokens yields the
best micro and macro F1 scores across both datasets. This suggests that generating two new tokens is
sufficient to achieve optimal model performance for SSC task, whereas generating only one token restricts
the model’s ability to process information, and generating three tokens introduces bias into the SSC label
prediction.

2.5 Conclusion

We introduce LLM-SSC, a unified framework for in-context learning and parameter-efficient LLM finetun-
ing for multi-label sequential sentence classification problem. LLM-SSC integrates complete contextual
information within the prompt and considers neighboring context when making predictions. Additionally,
we present a multi-label contrastive learning loss with auto-weighting scheme to reweight the importance
of negative pairs and address the multi-label sequential sentence classification problem. Furthermore, we
release BIORC800, a manually annotated multi-label SSC dataset using unstructured abstracts from the
biomedical field, contributing to the development of more robust methodologies for this task. Extensive
experiments validate the remarkable capability of LLM-SSC in SSC tasks under both in-context learning
and parameter-efficient finetuning settings.

2.6 Future Work

Currently, we have analyzed the sentence-level argument structure of biomedical abstracts, which provide
a condensed summary of the full-text. However, this condensation process may omit detailed reasoning,
supporting evidence, or essential context from the full-text. By analyzing the entire document, we can
extract a more comprehensive and detailed argument structure across paragraphs. This broader perspective
has the potential to improve downstream tasks such as fine-grained information retrieval and the identification
of issues in methodological designs. As a next step, we plan to explore paragraph-level argument structure
extraction within full-text biomedical literature.

Section headers in biomedical literature always provide the signals for the rhetorical purpose or topical
focus of the information presented within each section of the literature. Inspired by this feature, our approach
to full-text argument structure extraction will primarily rely on section header information. Specifically, we
will explore how to assign a predefined argument role to a section content based on the rhetorical signals
conveyed by its header, following the steps as:

(a) Collect a representative sample of approximately 50 full-text articles from the PubMed Central Open
Access repository, ensuring diversity in biomedical domains, publication venues, and article types.

(b) Extract section headers and their corresponding content from the selected articles. Use the mapping
standards defined in the Label List and NLM Category Mappings File12 to align each section header with a
standardized argument role. Assign the identified argument role to the associated section content.

(c) Evaluate the reliability of the rule-based argument structure identification results from step (b),
and refine the mapping approach as needed—for example, by expanding from single-label to multi-label
classification.

12https://wayback.archive-it.org/7867/20241213200409/https://lhncbc.nlm.nih.gov/ii/areas/structured-
abstracts/downloads/Structured-Abstracts-Labels-111314.txt
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Chapter 3

Automatic categorization of
self-acknowledged limitations in
randomized controlled trial publications

This chapter has been adapted from: Lan, M., Cheng, M., Hoang, L., Ter Riet, G., & Kilicoglu, H. (2024).
Automatic categorization of self-acknowledged limitations in randomized controlled trial publications. Jour-
nal of biomedical informatics, 152, 104628. My contribution to the study are (in the format of CRediT
taxonomy): conceptualization, formal analysis, data curation, investigation, methodology, software, valida-
tion, visualization, writing-original draft, writing-review & editing.

3.1 Introduction

Biomedical publishing has been transformed in recent years, spurred in part by the COVID-19 pandemic [103].
There has been a sharp rise in non-peer-reviewed preprint publications [104], and the speed with which
these studies have been conducted and published has raised concerns in scientific and lay press about the
methodological and reporting quality of COVID-19 research [105]–[108]; some publications in prominent
journals were eventually discredited or retracted [103]. Such issues, of course, are not new or limited to
COVID-19 research, or even to biomedical science. Problems in study design, execution, data analysis, and
reporting affect the validity and applicability of the findings in any field. It is essential for researchers to
acknowledge potential weaknesses and biases of their studies (i.e., its limitations) and discuss their magnitude
when publishing their findings [109], [110]. Recognizing and discussing limitations is essential for scientific
progress, as they help the reader contextualize the study, understand its findings, and assess the credibility
of these findings [109]. Limitation discussions could also reveal future research directions and the caveats
that need to be considered when incorporating the new findings into scientific evidence [109], [111], [112].

Study protocols are increasingly accessible, making it possible for experts to decide on the important
study limitations themselves if authors are open about all discrepancies between study plan and execution;
however, publications should also be optimally informative for readers who are not seasoned experts in a
particular research field and frank limitations sections will probably remain important [113].

Randomized controlled trials (RCTs) are a cornerstone of clinical medicine and provide the most robust
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methodology to generate evidence on the effectiveness of therapeutic interventions [114], [115]. To fully
realize their potential for informing patient care and health policies, they need to observe high methodolog-
ical and reporting quality standards [114]–[116]. However, this is often not the case, leading to low-quality
evidence and significant research waste [116]. One common reporting problem in RCT publications is that
authors often do not properly acknowledge the limitations of their study [109], [113], [117], [118], making it
difficult for stakeholders (peer reviewers, journal editors, systematic reviewers, clinicians, policymakers) to
contextualize the findings and assess their trustworthiness [109]. CONSORT reporting guidelines for RCT
publications [114], [119] recommends reporting of limitations in RCT publications and states that “trial
limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses” [114]
should be discussed in Discussion sections. However, reporting of limitations has been found to be inad-
equate [113], [120], similar to other checklist items [121]–[123]. Automated screening tools can reduce the
time and effort for manual checks in journals, provide rapid reporting quality assessments of preprints, and
raise awareness of poor reporting practices among researchers [124]–[126], leading to gradual improvements
in RCT reporting. Natural language processing (NLP) techniques can underpin such screening tools [125]–
[128].

Previous work has developed NLP models for recognizing sentences discussing self-acknowledged lim-
itations (SALs) in clinical publications [60]. The work compared several models, including a rule-based
approach, a logistic regression classifier, and a SVM classifier, and experimented with self-training to ad-
dress the data scarcity problem. The rule-based method performed reasonably well (0.80 F1 score and 0.915
accuracy). So the previous work used this method to study the impact of peer review on discussion of study
limitations [129], finding support for the idea that editorial processes lead to more self-acknowledgment of
study limitations. This method was later incorporated into a pipeline of tools for screening COVID-19
preprints for transparency and reproducibility [125], [126]. While automatically identifying limitation sen-
tences are useful as a simple reporting check (i.e., have limitations been acknowledged?), extracting the types
of limitations reported could help in: a) more precisely contextualizing a study’s findings and assessing their
credibility; and b) better understanding the common types of problems in large sets of research studies,
including RCTs, to answer meta-research questions. In this study, we extend the previous work [60] by
extracting self-acknowledged limitation types from RCT publications. We make the following contributions:

1. We create a SAL sentence recognition model by fine-tuning the PubMedBERT model [130], which
outperforms the model created in the previous work [60].

2. We develop a fine-grained data model of limitation categories, taking related work [62] as our starting
point.

3. We manually annotate a corpus of 200 RCT publications with SAL categories at fine granularity.

4. We fine-tune the PubMedBERT model for multi-label sentence level classification of SAL types.

5. We experiment with prompt-based data augmentation with the help of a large language model to
address the data imbalance and scarcity problem.

6. We analyze the model output on a large corpus of RCT publications to describe the commonly reported
limitations of RCTs.

Our results show that annotating SAL types and achieving good inter-annotator agreement (IAA) is
challenging. Our NLP model shows that it is possible to recognize SAL types at coarse granularity, while
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experiments with finer granularity yield more modest results. Prompt-based data augmentation improves
NLP model performance. Sample size and population-related limitations are the most commonly discussed.

3.2 Related Work

On the other hand, there is a significant body of literature on natural language processing for RCT publica-
tions. Most of this literature has focused on extracting PICO classes (Population, Intervention, Comparator,
Outcome) to assist systematic reviews and facilitate evidence-based medicine, often using sentence classifi-
cation [56], [70], [131]–[135] and named entity recognition [135]–[139]. Some research focused on classifying
RCT abstract sentences along IMRaD (Introduction-Methods-Results-Discussion) categories [14], [56], [70].
Other recent studies investigated extraction of information relevant to methodological assessment of RCT
studies, such as risk of bias information [140], study characteristics (e.g., sample size) [141], [142], and
CONSORT checklist items [9], [124], [143]. Recent state-of-the-art models have relied on domain-specific
Transformer-based, pretrained language models [22].

To enable NLP model development and validation, a large amount of high-quality labeled data is often
needed. Labeling such data, especially in biomedical domain, is challenging, because annotation is time-
consuming and requires significant domain expertise. Methods to address small sample sizes have been
proposed, often studied under the umbrella of weak supervision and data augmentation. Weak supervi-
sion attempts to use domain knowledge and subject matter expertise to assign somewhat noisy labels to
unlabeled data [144]. Data augmentation generates realistic examples from a limited number of existing
examples [145]. For example, simple transformations of individual sentences (e.g., synonym replacement,
random deletion/insertion) have been used to improve modeling accuracy with small datasets [146], [147].
Given that such modifications may distort the original meaning of the text, recent research studies have used
large language models to synthesize more meaningful sentences [148]–[150].

3.3 Material and methods

3.3.1 Improving SAL sentence classification

We fine-tuned the PubMedBERT model [130] from HuggingFace’s model repository (microsoft/BiomedNLP-
PubMedBERTbase-uncased-abstract-fulltext) on the limitation sentence dataset reported in prior work [60].
This dataset consists of 2,257 sentences, 467 (20.7%) of which include SALs. As the input representation for
the model, we concatenated the target sentence, the top section header (e.g., Discussion), and the innermost
section header (e.g., Study Limitations) and fed the [CLS] token representation generated by PubMedBERT
to a linear layer for binary classification. Binary cross-entropy loss is used as the loss function. We set the
maximum sentence length to 512 tokens and tuned all the hyperparameters on the development set. The
following hyperparameters were used: AdamW optimizer, batch size: 4, learning rate: 3e-5, and epochs: 10.

We split the manually annotated dataset (200 articles) to train/dev/test sets as 120/40/40. To tune
the PubMedBERT-based models SAL classification, we also set the maximum sentence length to 512 tokens
and tuned the hyperparameters on the development set. The following hyperparameters are used for the
reported models: AdamW optimizer, batch size: 4, learning rate: 1e-5, epochs: 20. All experiments were
conducted on a Tesla T4 GPU.
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3.3.2 Data collection for SAL type annotation

We collected a dataset of 200 RCT articles for annotation. A subset of the articles (52) came from our
previous studies on limitation sentence classification [60] and CONSORT sentence classification [124]. Only
those articles containing sentences manually labeled as limitation sentences were included. The rest of the
RCT articles were sampled from PubMed Central Open Access Subset (PMC-OA) using a modified version
of Cochrane’s sensitivity and precision-maximizing query for RCTs as the search strategy. We split the
downloaded RCT articles into sentences using the NLTK sentence tokenizer and identified the section to which
a sentence belongs using a section recognizer. Then, the SAL sentence classifier based on PubMedBERT
fine-tuning (described above) was used to identify SAL sentences from the abstract and discussion- and
limitation-related sections, indicated by the keywords discussion, limitation, weakness, conclusion, caveat,
shortcoming, and drawback in the header, consistent with previous work [60]. One of the authors (HK)
manually assessed the accuracy of the sentence classifier predictions to verify that only RCT articles with at
least one SAL sentence were included in the corpus.

3.3.3 Data model for SAL types

To create the data model for annotation, we started with the limitation categorization presented in a re-
cent investigation of manual therapy trials [62]. Their categorization consists of 12 top-level categories (e.g.,
Blinding, Sample Size, Inadequate Control, Compromised Generalization) and 38 sub-categories (e.g., Under-
powered Study, Convenience Sampling, and Recruitment Less Than Expected for the Sample Size category).
After a test annotation of 10 articles, we recognized the need to simplify and adapt the categorization, as
some categories related to specific characteristics of manual therapy trials (e.g., Therapist Profile) and some
categories seemed difficult to reliably differentiate (e.g., Intervention vs. Compromised Generalization due
to Intervention). As a result, two authors (HK and GtR) redesigned the data model in several iterations.
The final data model consists of 15 top-level categories and 24 sub-categories. The data model and the
definitions of the categories are provided in Table 3.1 and annotation examples in Table 3.2.
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Top-level Fine-grained categories Description

StudyDesign Limitations that have to do with the specific trial design used (e.g., crossover,
factorial, cluster, etc).

Population
Limitations that have to do with the selection of subjects who participated in
the trial.

DiagnosticCriteria Lack of standardized diagnostic criteria for including participants.

VerySpecificPopulation Inclusion criteria considered too restricted (e.g., single gender, athletes only,
education level, or race).

ConvenienceSampling The sampling method was linked to specific study needs. Subjects were se-
lected because they were convenient sources of data for the study.

Setting
Limitations related to where the study takes place.

Unicentric Study was conducted recruiting participants from a single center.

Intervention
Limitations that have to do with the active intervention treatment used.

CompositeIntervention It was not possible to know the net effect of every component in multimodal
treatments.

NonStandardTreatmentCharacteristics The specific parameters for the intervention were not standardized (e.g.,
dosage, mode of administration).

Control
Limitations that have to do with the control intervention placebo.

NoPlaceboGroup No control intervention is included.

ActivePlacebo An active intervention (non-inert) was selected as control.

CareAsUsualControlGroup Due to the non-standardization of CAU, it is uncertain what it is that the
experimental group is being compared to. In these cases, the control group
treatment will sometimes be mentioned as “care as usual”.

Outcome

Measures

Limitations related to the outcomes used and how they are measured.

Table 3.1: Types and descriptions of self-acknowledged limitation types.
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Top-level Fine-grained categories Description

RelevantOutcomeExcluded Some relevant data that would potentially provide interesting findings were
not collected during the study.

PrecisionOfMeasurement Lack of or low precision of outcome measures. This refers to a limitation due
to random errors that might have been introduced in measurement.

ValidityOfMeasurement The selected assessment instrument was not originally validated for the specific
population or problem studied. This indicates that the outcome measurement
may not correctly measure the concept that is the target of the measurement
(systematic error, as opposed to random error).

ResponsivenessOfMeasurement Outcome measures were not sensitive enough to detect subtle changes (e.g.,
use of ordinal scales). Responsiveness is defined as the ability of an instrument
to accurately detect change when it has occurred.

MissingData

Some data were not collected for some study participants. This indicates
that some planned follow-up measurements, whether outcomes or co-variables
(confounders) were not collected, regardless of the reasons for that missingness.

HighLossToFollowUp Many participants stopped participating before the planned duration of follow-
up.

UnbalancedDropout Characteristics of dropped out patients differed between groups (‘informative
drop-out’). For example, relatively healthy patients dropped out from the
experimental group, whereas patients in relatively poor health dropped out
from the control group.

Underpowered

Study

Inability to detect differences between groups due to sample size or insufficient
number of outcome events.

SampleSize Limitations related to the insufficient number of patients participating in the
trial. This may be a result of recruitment difficulties.

Randomization Limitations that have to do with the randomization of patients into different
trial arms.

Table 3.1: Types and descriptions of self-acknowledged limitation types.
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Top-level Fine-grained categories Description

UnbalancedGroups After randomization, there were large differences between the groups with
respect to (mean values of) prognostically important factors (confounders).
This is problematic because the response to interventions may be due to these
confounders, rather than the interventions.

PoorRandomizationMethods Randomization methods used (e.g., for sequence generation, restriction strat-
ification, concealment) were not optimal. This also includes a lack of such
methods, e.g., that allocation was not concealed (i.e., once a patient is as-
signed, the next assignment is predictable).

Blinding

Limitations related to how the study participants and personnel were blinded
to the study groups.

Patient Patients were not blinded with respect to the study groups.

StudyTeam Some people in the study team (investigators, care providers, outcome asses-
sors, statisticians etc.) are not blinded.

StudyDuration

Limitations that have to do with the length of the study. It could be the
experimental phase or the follow-up.

ExperimentPhaseDuration The intervention phase is too short. It could be due to early stopping.

FollowUpDuration Only short term effects were evaluated. Long term (adverse) effects of the
interventions were not considered.

Statistical

Analysis

Limitations regarding the methods used for statistical analysis, indicating that
the techniques used may not have been appropriate or were suboptimal.

MultipleTesting Simultaneous testing of more than one hypothesis.

ConfoundingFactors Findings were not adjusted for covariates.

Funding The limited or lack of funding affected the study progress or completion.

Table 3.1: Types and descriptions of self-acknowledged limitation types.
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Top-level Fine-grained categories Description

Generalization The study results were compromised and may not generalize due to type of
setting, specific population, intervention, and measurement instruments.

Other Catch-all category for all limitation types that do not neatly fit in any of these
categories.
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Top-level Fine-grained categories Description

StudyDesign (19) (19) One study limitation is the use of a non-randomized control group.

Population (192) (59) The unequal distribution of gender in the study sample may also have
influenced the results.

DiagnosticCriteria (23) We defined no exclusion criteria related to severity of background
illness or sepsis.

VerySpecificPopulation (112) While the sample was randomly selected, selection bias is possible due to
the 64% response rate.

ConvenienceSampling (2) We did not recruit a representative sample; thus study results cannot be
used to draw conclusions about hypothesis testing or population-level dynamics.

Setting (12) (5) Educational classes were an important activity in this trial and the uptake
of information could have been better in larger schools.

Unicentric(7) Finally the characteristic of being a monocentric trial can be considered both
a limitation but also an advantage due to reduction of variability of care.

Intervention (109) (67) Finally, while participant retention and compliance with outcomes protocols
was high (loss to follow-up was 2%), adherence to TC training was lower
than expected.

CompositeIntervention (10) We chose not to have an intervention group receiving BMD feedback
alone without any other educational intervention.

NonStandardTreatmentCharacteristics
(33)

One possible reason for the lack of effect is that families did not comply
with the intervention.

Control (23) (6) The absence of another control comparator makes it difficult to attribute
the beneficial effects solely to the intervention.

NoPlaceboGroup (6) To prevent this bias, a placebo treatment group with patients receiving
an equal amount of therapist attention would be required.

Table 3.2: Limitation type categories with example sentences in the
annotated dataset. Numbers in "()"s denote the number of samples for
each category in our dataset. Spans relevant to the categorization are
highlighted in bold.
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Top-level Fine-grained categories Description

ActivePlacebo (9) First, it is known that the controlled substance propofol also has pro-
tective characteristics.

CareAsUsualControlGroup (2) Our choice of a usual care control followed the overarching practical goal of
our study–to evaluate the potential benefits to osteopenic women of adding TC
to usual care.

Outcome

Measures (190)

(28) We are also limited by our exclusive focus on intra-individual factors
as moderators.

RelevantOurcomeExcluded (66) Genotyping, which was not practical in our study setting, might have
aided the interpretation of our findings.

PrecisionOfMeasurement (59) However, self-reported outcome by patients is necessarily subjective
and affected by many things besides knowledge of treatment allocation.

ValidityOfMeasurement (28) The difficulty of capturing all dimensions of physical activity by
questionnaire is well-known[38,39], particularly non-leisure activities in
women[40].

ResponsivenessOfMeasurement (9) There are several possible explanations for this, including the possibility that
our measures were not sensitive enough over this time period.

MissingData (86)
(63) Furthermore, we do not have complete information about adherence

to study medication.

HighLossToFollowUp (15) Our loss to follow-up for our functional secondary outcomes mea-
sured at ICU and hospital discharge was also significant as patients
were often unable to participate in the assessments.

UnbalancedDropout (10) This impression of practical difficulty is reinforced by the significantly
higher proportion of participants that withdrew from the trial in the
intensive arm.

Underpowered

Study (185)

(82) The subgroup analysis is therefore confronted with an even poorer
lack of power.

Table 3.2: Limitation type categories with example sentences in the
annotated dataset. Numbers in "()"s denote the number of samples for
each category in our dataset. Spans relevant to the categorization are
highlighted in bold.
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Top-level Fine-grained categories Description

SampleSize (115) Even when the remaining girls complete the study, the number evalu-
able at final height will still only be 92.

Randomization (24)
(6) Another limitation is that we performed simple randomization instead of

block randomization.

UnbalancedGroups (11) This method was not used in this study but probably would have avoided this
unlucky uneven distribution of severity factors.

PoorRandomizationMethods (8) Although open allocation was an unavoidable limitation of the monitoring
randomisation and was not undertaken for the ART-strategy randomisation,
the endpoint review committee adjudicated endpoints masked to randomization.

Blinding (64) (31) Therefore, it is not clear why bias (or lack of blinding) would not have
similarly led to more crossovers from the RF to the conventional needle.

Patient (19) First, subjects were not blinded to their intervention group.

StudyTeam (16) One major limitation was that the first author conducted all aspects of
the trail including provision of care to all study participants.

StatisticalAnalysis

(38)

(9) Furthermore, due to the exploratory nature of the feasibility study, no multi-
ple outcomes or sample size calculation were performed.

MultipleTesting (12) Finally, we conducted a number of statistical tests, raising the potential con-
cern of alpha inflation.

ConfoundingFactors (17) Differences in age, stress, depression, and other factors can po-
tentially influence success in managing weight, and may have con-
founded results.

StudyDuration (51)
(6) The short duration precluded the use of change in HbA levels as an efficacy

end-point.

ExperimentPhaseDuration (21) Study duration is another potential study limitation given the long half-life
of OKZ (31days).

Table 3.2: Limitation type categories with example sentences in the
annotated dataset. Numbers in "()"s denote the number of samples for
each category in our dataset. Spans relevant to the categorization are
highlighted in bold.
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Top-level Fine-grained categories Description

FollowUpDuration (24) Longer-term follow-up is needed to confirm any lasting positive effects on
BMD from ongoing calcium supplement use.

Funding (4) (4) The trial was stopped after achieving 86% of target recruitment owing to time
and financial limitations.

Generalization
(66)

(66) As such, our sample might not be generalisable to all those who ex-
perience grade 1 and 2 ankle injuries.

Other (2) (2) This pilot trial involved co-funding and participation by the device
manufacturer.
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3.3.4 SAL type categorization

We formulated the task of identifying SAL types discussed in an RCT publication as multi-label sentence
classification, despite associating these types with spans in annotation. This is due to a couple of reasons.
First, we observed that spans indicating SAL types were very heterogeneous, ranging from short noun
phrases which look like typical named entities to entire sentences. Secondly, IAA for span annotation
was found to be low (results below), probably due to this heterogeneity. Because the goal of SAL type
categorization is ultimately to understand which limitation types are described in an article, not finding
the exact spans indicating them, a sentence multi-label classification approach was deemed appropriate.
We converted and consolidated span-level annotations to sentence-level annotations. As our classification
scheme, we experimented with both the top-level and the fine-grained categorization. Note that in fine-
grained categorization, top-level categories are still considered, because it is possible that some sentences
only have top-level labels. The dataset was split into training/development/test sets of 120, 40, and 40
articles, respectively.

As the baseline model for SAL type categorization, we also fine-tuned the same PubMedBERT model [22]
using the target sentence prepended with the section headers as input. Similarly, in this case, the represen-
tation for the [CLS] token for the target sentence is fed into a multi-layer perceptron (MLP) and a softmax
layer that calculates the probability distribution of each label for the target sentence. We then apply dynamic
thresholding, which uses different probability thresholds for each label. The optimal threshold for each label
is determined based on the label-specific F1 score on the development set. Cross-entropy loss is used as the
loss function.

To fine-tune the PubMedBERT model for limitation sentence classification, we set the maximum sentence
length to 512 tokens and tuned all the hyperparameters on the development set. The following hyperparam-
eters were used: AdamW optimizer, batch size: 4, learning rate: 3e-5, and epochs: 10.

We split the manually annotated dataset (200 articles) to train/dev/test sets as 120/40/40. To tune
the PubMedBERT-based models SAL classification, we also set the maximum sentence length to 512 tokens
and tuned the hyperparameters on the development set. The following hyperparameters are used for the
reported models: AdamW optimizer, batch size: 4, learning rate: 1e-5, epochs: 20. All experiments were
conducted on a Tesla T4 GPU.

Prompt-based Sentence Augmentation

Our annotation yielded an imbalanced dataset with few examples for some categories, including some top-
level categories. To address these shortcomings, we used data augmentation to synthesize novel samples
for the less frequent classes. As our primary data augmentation method, we adapted the PromDA method
(Prompt-Based Data Augmentation) [150], which is built upon the T5-Large encoder-decoder model [151]. It
keeps the entire pre-trained T5 model frozen, prepends additional soft prompts (i.e., a sequence of continuous
and trainable vectors) in each layer of the model, and tunes the soft prompts only [152]. Soft prompts are
pre-trained using a mechanism named Task-agnostic Synonym Keyword to Sentence pre-training. Next, a
dual-view data augmentation approach is used to generate synthetic samples conditioned on the keywords
in the input sample (Input View) and the input sample label (Output View), respectively. Keywords for
the Input View are extracted using the unsupervised keyword extraction algorithm Rake [153]. Finally, a
consistency filtering step is applied to only keep synthetic samples with consistent labeling.

In this study, we use the soft prompt parameters pretrained on the realnewslike dataset [151]. We fine-
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tune the pretrained parameters using samples from the classes with fewer than 70 samples in our training set.
Samples with multiple labels were excluded from data augmentation, since it was hard for the augmentation
method to differentiate the features for each label. Funding label was excluded, because all sentences with
this label were multi-label. In addition to original PromDA, we also experimented with augmentation with
Input View and Output View only, because we observed that consistency filtering led to more examples
for frequent labels and few examples for rare labels. We generated 10 synthetic examples for each original
sentence. To augment the training set, we set the minimum number of samples for each class to 70. For
classes with n samples in the training set (n < 70), we add 70 - n synthetic samples to the training set.
The 70 – n samples are randomly selected from the synthesized sentences. Figure 3.1 depicts the PromDA
process.

Figure 3.1: Overview of our soft-prompt based data augmentation (PromDA).

Oversampling

We also experimented with oversampling to address the issue of imbalanced data. Oversampling randomly
duplicates samples from the minority classes to increase their representation in the training set. As in
PromDA, we set the target size of each class to 70 and added 70−n duplicate samples for classes with fewer
than 70 samples, where n represents the number of original samples for the class.

Easy Data Augmentation (EDA)

Another method we used for data augmentation was EDA [146], a simpler, rule-based method that syn-
thesizes samples via simple modifications to the original sentence, including word order shuffle, random
deletion/insertion, and synonym replacement. As in other methods, we set the target size of each class to
70.

Rule-based identification

To address the Funding class, which was not augmented, we use a simple rule-based method, which labels a
sentence as Funding, if stemmed tokens in the sentence contain the stems "financi” or "fund”.

3.3.5 Evaluation

We evaluated the SAL sentence classifier using precision, recall, and F1 score for the positive class and
accuracy, in line with previous work. For SAL type categorization, we trained a baseline model by fine-
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tuning the PubMedBERT model on the manually annotated training set. We compared this model to those
trained with augmented training sets (PromDA, PromDA – Input View, PromDA – OutputView, EDA). For
comparison, we also trained the baseline model with the fine-grained labels. The model performances were
measured using micro-precision, recall, and F1 score. To obtain reliable estimates of model performance, the
models were trained and tested using five randomly initialized runs. We report the performance averages of
these runs and the standard deviations. We use McNemar’s test [154] to determine whether the performance
difference between the rule-based method and the PubMedBERT model for limitation sentence classification
is statistically significant. To observe whether the data augmentation methods lead to statistically significant
differences, we use Bhapkar test [155], a multi-class extension of McNemar’s test, and treat multi-label cases
as additional classes.

3.3.6 Large-scale analysis of SALs

To describe SAL reporting at large scale, we used a set of 11,988 RCT articles (not included in our manually
labeled dataset). This unlabeled dataset, curated from the PMC-OA subset in prior work [143], includes
articles published from 2011 to 2020. We first applied the SAL sentence classifier to this dataset and
extracted SAL sentences from the abstract, discussion- and limitation-related sections. We then applied the
best-performing SAL type classification model to these sentences to predict limitation types.

3.4 Results

3.4.1 Dataset Statistics

We annotated a total of 200 RCT articles, published between 2001 and 2022. 52 articles (26%) were published
in general medical journals (e.g., BMJ), while the rest were published in specialty journals. 66 (33%) of the
articles were published in journals with high-impact factors (defined as journal impact factor >= 10).

A total of 1090 limitation types in 952 limitation sentences were annotated (1.15 and 5.45 limitation
instances per sentence and per article, respectively). The top-level distribution and the count and percentage
of sub-categories under each top-level category at the sentence level are presented in Figure 3.2. Among
the top-level categories, the most common limitation type was Population (192 out of 1090, 17.6%), closely
followed by OutcomeMeasures (190) and UnderpoweredStudy (185). Limitations related to Funding (4)
and Setting (12) were least reported. At fine-grained level, SampleSize (115), VerySpecificPopulation (112)
and UnderpoweredStudy (82) were most discussed. The least mentioned fine-grained limitation types were
ConvenienceSampling (2), CareAsUsualControlGroup (2) and Funding (4).

When we considered the unique limitation types reported in publications, we found that Underpow-
eredStudy appears in 55% of the articles, closely followed by OutcomeMeasures (53.5%) and Population
(52.5%).

Articles published in general medical journals had an average of 5.38 limitation sentences [95% CI: 5.26-
5.51], and those published in specialty journals had an average of 4.56 sentences [95% CI: 4.50-4.62]. The
average number of SAL types per general medical journal article was 3.75 [95% CI: 3.70-3.80] and that per
specialty journal article was 3.45 [95% CI: 3.40-3.49].

Articles published in high-impact journals had an average of 5.23 limitation sentences [95% CI: 5.12-5.34],
and those in lower-impact journals an average of 4.53 [95% CI: 4.46-4.60]. The average number of SAL types
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per high-impact journal article was 3.86 [95% CI: 3.79-3.94] and that per lower-impact journal article was
3.34 [95% CI: 3.30-3.37].

3.4.2 IAA

Sentence-level IAA (Krippendorff’s α with MASI) was 0.45 at the top level and 0.3 at the fine-grained
level for 50 multiple-annotated articles over two annotation stages. In the second (last) stage of multiple
annotation, they were 0.61 and 0.39, respectively, indicating some improvement in consistency over the
first stage. Pairwise token-level agreement (pairwise κ [101]) showed a range of 0.2-0.46 for the top-level
categories and 0.11-0.3 for the fine-grained categories. There are no standard guidelines for interpreting
Krippendorff’s α; however, the range of 0.6-0.8 is traditionally considered substantial agreement in the
literature on agreement coefficients [156].

Given the low agreement at the token level and for fine-grained categories, we made the decision to focus
on top-level categories and sentence-level classification for our NLP models. We note that all annotations
were examined by at least two annotators, and verified for consistency by the annotator with the highest
agreement with others (HK), which increases our confidence that the annotations can be used for training
NLP models.

3.4.3 SAL Sentence Classification

The performance of the PubMedBERT-based SAL sentence classification model is reported in Table 3.3, along
with the model performances from our previous work [60]. We obtained the best overall results with the
PubMedBERT-based model proposed in this study (F1 score 0.821 vs. 0.806), mostly due to improvements
in recall (0.907).

Method Precision Recall F1 Accuracy

Rule-based method* 0.758 0.848 0.800 0.915

SVM* 0.766 0.693 0.728 0.896

SVM + self-training* 0.778 0.835 0.806 0.919

PubMedBERT (this work) 0.751 0.907 0.821 0.929

Table 3.3: Performance comparison of limitation sentence classifiers. * denotes the results from previous
work [60]. The performance difference between the PubMedBERT model and the rule-based method is
statistically significant (McNemar’s test: p < .001). We were unable to calculate the statistical significance
of the performance difference with the SVM models, because their predictions were unavailable.

3.4.4 SAL Type Classification

Table 3.4 shows the performances of the SAL type classification models trained with and without data
augmentation. For the baseline model (PubMedBERT fine-tuning), we present the model performances for
both the top-level and fine-grained labels. Unsurprisingly, using a smaller set of labels (top-level) leads to
better classification performance overall (about 18 absolute F1 points better, 0.671 vs. 0.494). We consider
the model using the top-level categories our primary model.

Oversampling led to an overall degradation in model performance. While EDA improved recall, it also
led to a drop in precision, F1 score remaining essentially the same. Although the original PromDA uses the
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Figure 3.2: The sentence-level distribution of SAL types on the manually annotated dataset. Note that in
some cases, the total number of fine-grained labels in a top-level category exceeds the total number for the
top-level category, because the same sentence could be labeled with a top-level category as well as a fine-
grained label belonging to the same top-level category (e.g., 10.6% + 7.5% > 17% for the UnderpoweredStudy
category).
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Prediction Level Method Precision±SD Recall±SD F1±SD

Top-level

PubMedBERT 0.680±0.024 0.666±0.011 0.673±0.010

+ Oversampling 0.659±0.024 0.646±0.035 0.652±0.028

+ EDA* 0.664±0.015 0.679±0.003 0.671±0.008

+ PromDA

Original*
0.631±0.043 0.619±0.039 0.625±0.039

+ PromDA

(Input View)**
0.643±0.020 0.633±0.027 0.638±0.022

+ PromDA

(Output View)**
0.690±0.011 0.711±0.015 0.700±0.007

Fine-grained PubMedBERT 0.488±0.019 0.500±0.021 0.494±0.017

Table 3.4: Micro-precision, recall and F1 scores for SAL type classification models. The average and the stan-
dard deviation over 5 randomly initialized runs are reported. The statistical significance of the performance
difference between vanilla PubMedBERT model and models that use data augmentation are calculated using
Bhapkar test and are shown with asterisks (*: p < .05, **: p < .001). The performance difference with the
oversampling model is not statistically significant (p = .055).SD: standard deviation.

most advanced technique, it led to a reduced performance (0.625 micro F1 score), which we attributed to
the consistency filtering limiting the generation of examples for rare classes. When we only use the examples
generated by PromDA (Output View) as additional training data, we obtain the best model performance
(0.700 F1 score). We note that using only PromDA (Input View) also yields poorer results compared to
the baseline. The effect of including data augmentation methods on model performance is statistically
significant, except for oversampling (p < .05 for EDA and PromDA, and p < .001 for PromDA (Input View)
and PromDA (Output View).

3.4.5 Large-scale Characterization of SALs in the RCT literature

Figure 3.3: Document-level distribution of SAL types on the large-scale RCT dataset. x-axis shows the
number of articles that contain a specific SAL type.
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From 11,988 RCT articles, our SAL sentence classifier identified 74,670 sentences out of 2,198,534 sen-
tences as limitation sentences (4.23%). 10,843 RCT articles out of 11,988 had SAL sentences (90.4%, 6.2
sentences per article), which is close to the finding by Alvarez et al. [62] that 9% of RCT articles did not
report SALs, while being higher than earlier estimates [60], [109], [113]. In Figure 3.3, we present the SAL
type distribution in this dataset, in terms of the number of RCT articles reporting the limitation, extracted
by the PubMedBERT model trained with PromDA (Output View) data augmentation. OutcomeMeasures
are most prevalent (64.2% of articles), followed by Population (58.6%), Intervention (58.0%) and Underpow-
eredStudy (48.2%). These four types are also most common in the annotated dataset. The least common
types in the large-scale RCT dataset were Setting (4.9%) and Funding (2.2%), also the least common in the
annotated dataset.

3.5 Discussion

3.5.1 Limitation Reporting

In our annotated dataset, Population, UnderpoweredStudy, and OutcomesMeasures were most common lim-
itation types with similar prevalence, while Setting and Funding were the least common. This is largely
consistent with the findings of Alvarez et al. [62], who found that UnderpoweredStudy was the most com-
mon limitation type, and Setting and Funding related limitations were the least reported. In the annotated
dataset, the RCTs published in general medical journals and high-impact factor journals show higher limita-
tion reporting compared to those in specialty journals and lower-impact journals. The finding for the general
vs. specialty journal is consistent with the finding from ter Riet et al. [113].

In our large-scale analysis, we found that limitation types OutcomeMeasures, Intervention, in addition
to UnderpoweredStudy and Population, were highly reported, while Funding and Setting remained the
least reported types. About two-thirds of limitations reported seem to relate to the top four categories
(approximately 62% in the annotated dataset and 71% in the larger corpus).

3.5.2 Data Model and Annotation

We started with the limitation type categorization in Alvarez et al. [157]. Because they focused on manual
therapy RCTs, they included categories specific to that domain. Therefore, we created a modified catego-
rization, which we believe is more generalizable. Nonetheless, the fact that researchers in specific medical
specialties often report domain-specific limitations highlights the potential need for further extensions to
accommodate specialized areas.

Annotation of SAL types was challenging. Our initial plan to annotate spans indicating fine-grained types
yielded modest IAA due to the large number of fine-grained categories and the heterogeneity of limitation
type expressions. Therefore, we mainly focused on a top-level sentence-level characterization for NLP. IAA at
this level was comparable to agreement of experts in similar work [132], [136], [138]. We attempted to ensure
high-quality annotations by having at least two annotators evaluate each article. The resulting dataset is
relatively small, due to limited resources, and imbalanced, due to the nature of limitation reporting. However,
we believe that it represents a good first step towards understanding the limitations of RCT studies, both
explicit and implicit. We make the dataset publicly available to enable further studies in this area.
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3.5.3 NLP Models

Our results confirm PubMedBERT as a strong baseline system for supervised biomedical sentence classi-
fication and data augmentation as an effective strategy to address the data scarcity problem, common in
biomedical NLP tasks. While the performance of the SAL sentence classifier seems reasonable for practical
use, there is significant room for improvement for the SAL type classifier.

In this work, a prompt-based data augmentation method that uses a large language model (PromDA)
helped the SAL type classifier achieve better performance. Interestingly, while Output View augmentation
improved the performance, other mechanisms led to performance degradation. One potential explanation for
the degradation due to Input View could be that the keyword extraction method, Rake, does not work well
on biomedical text. Replacing this method with more recent methods, such as Yake [158] or KeyBERT [159],
or using biomedical named entity recognition tools to identify important concepts could be a future direction.
We also observed that consistency filtering diminished the possibility of generating examples of rare classes.
The improved performance due to Output View augmentation suggests that label names are informative
prompts for synthetic sentence generation using large language models. It seems plausible that SAL category
definitions (Table 3.1) could additionally be leveraged for further performance improvements.

To better understand the generalizability of the best model, we assessed the accuracy of 250 predictions
in the large-scale analysis set, which showed that 82% of sentences were correctly identified as the limitation
sentences, and the SAL types in 77% of these limitation sentences were predicted correctly. These figures
compare favorably to the precision of the sentence classifier and the SAL type classifier on the test sets (0.75
and 0.69, respectively) and suggest the generalizability of the model.

3.5.4 Error Analysis

Table 3.5 shows three errors made by the best-performing model (PubMedBERT + PromDA-Output View).
We leverage the saliency map created by integrated gradient algorithm [160] to gain insights into how the
model focuses on sentence features. Specifically, the gradient integrals of the model’s output with respect
to input features are calculated and presented by different colors; tokens assigned positive attention are
highlighted in green and those assigned negative attention in red. Color intensity corresponds to the feature
weight. In the first sentence, the features in the sentence, including “impossible”, “some”, and “between sub-
jects”, were positively weighted, while tokens that seem more relevant for the gold label Blinding (“prevent”,
“communication”) are negatively weighted, resulting in the incorrect prediction Intervention. In the second
sentence, the model attends to the token “device” and less to the seemingly relevant tokens “consistency” and
“standardization” for the gold label Generalization. In the third case, the token “participant” seems to have
high weight, leading to the correct prediction Population, while the tokens relevant for the label StudyDu-
ration (“short intervention period”) receive negative weight. This case also reveals the limited capability of
our model in the multi-label setting.

3.5.5 Limitations of the Study

Our study has limitations. First, the annotated corpus is small due to limited resources. We attempted to
address this issue by using data augmentation for NLP. The inter-annotator agreement was modest (although
similar to IAA in similar work, such as PICO classification [132], [136], [138]). We also took additional steps
to improve the data quality of the annotated corpus used for NLP. More specific RCT domain expertise,
more detailed annotation instructions, and more extensive discussions of annotations could have further
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Sentence True Predicted Word Importance

It was impossible to
prevent some com-
munication between
subjects in the FNI
and SC groups.

Blinding Intervention

We chose a single
device and manu-
facturer to ensure
consistency and
standardization.

Generalization Setting

Limitations in-
clude the short
intervention period
and predominantly
educated and white
participant group.

Population,

StudyDuration
Population

Table 3.5: Examples of errors made by the best-performing PubMedBERT PromDA-Output View model.
Word Importance column indicates how the classifier focuses on the sentence features. If a feature is as-
signed positive attention, it is highlighted in green. Conversely, a feature is assigned negative attention and
highlighted in red indicates bias might be introduced. The intensity of the color corresponds to the feature’s
weight.

improved data quality. The data model extended a data-driven characterization based on manual therapy
RCTs [62]. While we believe our characterization is more broadly applicable, a more theoretically sound
characterization based on causal inference literature [161] could have further improved generalizability. At
the same time, our model may lack more fine-grained categories that might be more practically relevant to
specialized domains. Our large-scale analysis is limited by the fact that we only considered a subset available
from PMC-OA and the underlying model is imperfect. Lastly, we note that SALs may differ from the "real”
limitations of a study as perceived by an RCT methodologist.

3.6 Conclusions

We presented the first NLP work on labeling and automatic identification of SAL types reported in RCT
articles (and scientific literature, more broadly). We also improved a previously reported SAL sentence
classification model. While the latter model performs well and has been incorporated into a COVID-19
preprint screening pipeline [125], [126], there is significant room for improving the performance of the SAL
type model, which we will explore in future work. We also reported a large-scale analysis of RCT literature
based on our model, which is the first of its kind.

3.7 Future Work

Given the importance of SALs in RCT publications for contextualizing the findings, it is essential to perform
a quantitative analysis of how biomedical researchers have reported SALs over time. As a next step, we will
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apply our proposed SAL type classification model to a collection of RCT publications spanning different time
periods. This will allow us to assess whether the reporting of SALs has improved over time and to examine
how the distribution of SAL types has changed over the years. Our exploration will follow the steps as:

(a) Data Collection: Gather a set of RCT articles for each year (200 articles per year) from 2001 to 2024
using the PubMed Central Open Access repository.

(b) SAL Identification Analysis: Apply our SAL identification model to quantitatively assess trends in
SAL reporting over the years.

(c) SAL Type Classification Analysis: Use our SAL type classification model to evaluate changes in the
distribution and prevalence of different SAL types across years.
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Chapter 4

Sentence Decontextualization via
LLM-driven Open Information
Extraction

The chapter is adapted from a paper under review of ACL2025. My contributions to the study are (in the
format of CRediT taxonomy): conceptualization, formal analysis, data curation, investigation, methodology,
software, validation, visualization, writing-original draft, writing-review & editing.

4.1 Introduction

Claims are key components of argument structures, often containing the main findings and novel contri-
butions of biomedical publications—making them the central focus of argument mining. However, the
interpretation of a claim could be influenced by the rich context in which it appears, where the rich context
refers to the surrounding textual and discourse elements such as the document’s topic, discourse structure,
causal links, and rhetorical cues. Effectively representing extracted knowledge from claims within such rich
context where it originally appears is crucial for knowledge-driven natural language understanding tasks. For
example, in fact verification tasks, evidence sentences to confirm or refute a claim are originally embedded
in nuanced contexts that might influence the evidence interpretation [37], as illustrated in Figure 4.1; in
claim extraction tasks, the claims are shaped by a claim sentence as well as its surrounding context in the
document, as illutrated in Figure 4.4 [42]. We refer to the task of extracting a sentence together with the
context to make the extracted knowledge interpretable while preserving the original sentence meaning as
"decontextualization"[43].

The definition of decontextualization by previous work emphasized preserving the meaning of the original
sentence while rewriting it by incorporating surrounding contextual information to make it interpretable [43].
However, subsequent works have introduced varying definitions of the term, such as the "decontextualiza-
tion" for atomic textual patterns extracted from sentences without maintaining the original sentence mean-
ing [64], [65], or "decontextualization" using both the context surrounding the sentence and external context
resource [63]. In this work, we treat decontextualization as "preserving the original sentence while adding
relevant contextual information to improve knowledge representation of the sentence". Our definition closely
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Figure 4.1: A sample for evidence decontextualization to support claim fact-checking [162]. The original
evidence sentence does not mention "blue-green algae", while the context indicates "blue-green algae" is
"poisonous". By integrating the contextual information and the evidence sentence (decontextualization), it
becomes clear that the evidence supports the claim.

aligns with the first definition [43], while not emphasizing sentence rewriting due to rewriting risks distorting
the original meaning (e.g. Figure 4.2).

There has been progress in explorations of decontextualization, but several gaps remain in this area.
From a supervised learning perspective, a decontextualization dataset is annotated through crowdsourcing,
which is then used to fine-tune sequence-to-sequence models [43] and support downstream tasks such as
continuous learning for LLMs [163] and fact verification [42]. However, the dataset is created based on each
annotator’s subjective judgment with a focused collection on the straightforward context information [43],
limiting the ability of the finetuned model to address complex contextual dependencies and variations. From
the perspective of pretrained models, given the strong language understanding abilities of LLMs, existing
frameworks mainly rely on inferencing LLMs and have been designed under different decontextualization
settings. Some used context from cross-document [63], and some others decontextualized atomic textual
patterns extracted from sentence [64], [65]. However, no generic framework has been developed that satisfies
the requirement of retraining the original sentence meaning while adding surrounding contextual information
only to provide a standardized and wide-ranged sentence-level decontextualization solution. In addition to
the challenges of model development, automatic evaluation of sentence decontextualization remains an open
problem, as existing studies use human evaluation [43], [63], or skip the sentence-level decontextualization
evaluation [64], [65].

LLMs have advanced the task of extracting structured information from unstructured textual data with
their implicit reasoning capabilities [49], [164], [165], which brings opportunities to understand better the
connection between a single sentence and the contextual entities, relationships, and patterns. As a sub-
domain of structured information extraction, open information extraction (OpenIE) breaks the reliance on
predefined schemas [166]–[168]. It works on open-domain data, which has the potential to introduce flexibility
for decontextualization to address diverse downstream tasks.
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Figure 4.2: An illustration for rewriting risks distorting the original sentence meaning. In the sample, the
original sentence refers to eight copies of the DD214. However, the decontextualized sentence is misrep-
resented as referring separately to DD214 copies, the "Certificate of Release", or "Discharge from Active
Duty". Furthermore, a single decontextualization outcome cannot fully cover all possible interpretations, as
mentioned in the previous work [43]. The decontextualization could retain more contextual details, such as
specifying that the DD214 copies contain information on discharge, re-enlistment, unemployment benefits,
and veterans affairs benefits.

In this paper, we investigate LLM-based structured knowledge extraction to support sentence decon-
textualization, with an emphasis on OpenIE. We propose LLM-DeCon - a unified framework that leverages
LLMs to decontextualize sentences within rich contexts. To address the problem with the existing supervised
decontextualization models that lack adaptability to the downstream tasks, the framework utilizes prompts
following OpenIE paradigm to flexibly extract structured knowledge from the context as supporting infor-
mation for decontextualizing the sentence. For automatic evaluation, we establish an evaluation benchmark
for decontextualization outcomes using three downstream datasets across two tasks—scientific claim con-
tradiction detection and fact verification—comparing baseline models trained on original sentences versus
decontextualized sentences.

We summarize our contributions as follows:

• We introduce LLM-DeCon, the first unified framework leveraging LLMs to tackle sentence decontex-
tualization by structured knowledge extraction through OpenIE, enhancing the flexibility and adapt-
ability of the decontextualized sentences.

• We set the evaluation method for sentence decontextualization by comparing models trained on original
sentences versus decontextualized sentences. The evaluation is conducted based on three datasets
originally designed for different text analysis tasks: Cardiology [169] for scientific claim contradiction
detection, and Rawfc [162] and SciFact [36] for fact verification.

• Our LLM-DeCon framework achieves state-of-the-art performance in decontextualization across all
evaluation benchmark datasets.

4.2 Related Works

4.2.1 Decontextualization

The concept of "Decontextualization" was first introduced in the table-to-text dataset ToTTo [170], where
a sentence within rich context is modified to include additional contextual information to be interpretable
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with the aligned table. Choi, Palomaki, Lamm, et al. [43] formalize the concept, defining it as "taking
a sentence together with its context and rewriting it to be interpretable out of context, while preserving
its meaning". They also introduced a dataset designed for fine-tuning sequence-to-sequence models for
decontextualization. The fine-tuned decontextualization model has been utilized in various downstream tasks
to enhance sentence representations in rich contexts, including continuous knowledge learning for LLMs from
new textual sources [171], trustworthiness revision of LLM-generated text using external knowledge [172],
and fact verification through claim extraction from documents [42].

In addition to fine-tuned models, pretrained LLMs have also been employed for decontextualization in
downstream tasks. For fact verification, LLMs have been used to decontextualize atomic evidences extracted
by decomposing the evidence sentences [65] or paragraphs [64]. To improve the representation of user-facing
snippet, such as the answers provided to users in a question-answering system, LLMs have been leveraged
to decontextualize the snippet through cross-document references [63].

4.2.2 Open Information Extraction

OpenIE is the task of identifying and extracting all possible entity relationships from unstructured text with-
out relying on predefined schemas [173], [174], enabling broader knowledge extraction compared to closed
information extraction. Before the era of deep learning, researchers developed rule-based methods with
statistical analysis to identify open named entities and relations, which heavily relied on syntax structure
extraction [166], [175]–[180]. In the deep learning paradigm, deep neural networks with its ability to auto-
matically learn complex linguistic patterns dominate the supervised OpenIE frameworks, including the RNN
model that supports learning of semantic role labeling [181], the bi-LSTM model that enhances syntactic
and semantic Learning from bi-directional context [55], [182], and the BERT models that enhances language
understanding by attention machenism [183]–[185]. In recent years, LLMs with their ability of comprehend-
ing the text without substantial training, have been leveraged in few-shot inference for open information
extraction and showing competitive results with supervise-finetuned models [186].

4.3 Methods

In this section, we first introduce the decontextualization notation, then present LLM-DeCon, a framework
that supports sentence decontextualization by leveraging structured knowledge extraction with large language
models (LLMs). The overview of the proposed framework is shown in Figure 4.3.

4.3.1 Notation

For a sentence Si extracted from the context C ({S1, S2, ..., Sn} ∈ C) where the sentence originally appears,
the decontextualization outcome S∗

i of Si within C should satisfy the requirements: a) S∗
i should include

enough contextual information to be understood unambiguously and independent from the content; b) S∗
i

should preserve the original meaning of Si, ensuring no information is lost or misrepresented in the sentence.

4.3.2 Structured Knowledge Extraction with LLMs

We leverage the in-context learning ability of LLMs to extract structured knowledge R from C, where
the decontextualization target sentence Si occurs. Specifically, we create a knowledge extraction prompt
that combines a demonstration with a query to guide LLMs in generating structured knowledge. The
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Figure 4.3: Overview of LLM-DeCon

demonstration samples are selected from a pre-annotated document-level OpenIE dataset, which contains
context samples COpenIE and open relations between entities ROpenIE within COpenIE . The open relations
in ROpenIE are represented as "<entity 1, relation, entity 2>". To select the most relevant demonstration,
we calculated the cosine similarity scores between the embedding of context C, where the target sentence
Si originally appears, and embeddings of all contexts in the OpenIE dataset COpenIE . The embeddings
are created using the e5-large-v2 model [187], chosen for its promising performance in information retrieval
tasks [188]. The best-matching OpenIE context C∗

OpenIE used for demonstration is identified as the one with
the highest similarity score to C:

C∗
OpenIE = argmaxSim(COpenIE |C) (4.1)

Given the a list of open relations R∗
OpenIE corresponding to C∗

OpenIE , the demonstration part of the
in-context learning prompt Qdemo is constructed as:

<Start>
The paragraph: C∗

OpenIE.
Extract entities and relations from the paragraph in a format of <entity 1, relation, entity 2>. Extraction

results:<R∗
OpenIE1>, <R∗

OpenIE2>, ... <R∗
OpenIEn>

<End>

where {R∗
OpenIE1, R

∗
OpenIE2, ..., R

∗
OpenIEn} ∈ R∗

OpenIE , and <R∗
OpenIEn> denotes the representation as

"<entity 1, relation, entity 2>" using the entities and relation in R∗
OpenIEn.

Then we create the query prompt Qquery. Given the decontextualization target sentence Si and the
context C where the Si originally occurs, the query portion of the prompt is formatted as:

<Start>
The paragraph: C.
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Extract entities and relations from the paragraph in a format of <entity 1, relation, entity 2>. Extraction
results:

The input prompt for in-context learning is constructed by combining the demonstration and query:

Q = Qdemo||Qquery (4.2)

We then treat the OpenIE for the context C in query Qquery as a text generation task. Specifically, we
guide the LLM with Q to generate a string Yrelations of a list of relation triplets that similar to R∗

OpenIE

from Qdemo:

Yrelations =

T∏
t=1

argmax
yt

P (yt|Q, y0:t−1) (4.3)

The relation triples from the generated relation prediction Yrelations, which is formatted as a list of
"<entity_1, relation, entity_2>" triples, collectively form the structured knowledge set R of context C.

4.3.3 Aligning Sentence to Structured Knowledge

We assume that if an entity in the sentence Si also appears in some relation tuples Rtarget in R, Rtarget

contains contextual information for Si. Therefore, to decontextualize the sentence, we check the occurrence
of entities from the extracted structured knowledge in the decontextualization target sentence, then com-
bine the relation tuples Rtarget that contains those sentence-related entities to form a single context string
Rtarget_combine. Next, Rtarget_combine is combined with the original sentence to form the decontextualization
outcome S∗

i :

Rtarget_combine = RS
target1||RS

target2||...||RS
targetn (4.4)

S∗
i = Rtarget_combine||Si (4.5)

where RS
targeti denotes the sentence-like representation as "entity_1 relation entity_2" using the entities

and relation in Rtargeti, and {Rtarget1, Rtarget2, ..., Rtargetn}∈ Rtarget.

4.4 Evaluation Benchmark

In this section, we present the evaluation benchmark for decontextualization quality, which covers three
datasets across two downstream tasks: fact verification and scientific claim contradiction detection. In the
fact verification tasks, the input consists of a claim sentence and related evidence, with the goal of determining
whether the claim is supported or refuted by the evidence. In the scientific claim contradiction detection
task, the input includes claim sentences from scientific documents, with the objective of identifying whether
the claims from different documents contradict each other. The baseline models chosen for each dataset
are originally designed to operate on single sentences, without incorporating the surrounding contextual
information. The impact of decontextualization on these tasks is evaluated by comparing models trained on
the original sentences versus decontextualized sentences.
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Figure 4.4: Example of claim decontextualization for cross-document contradiction detection [169]: The
original claim sentences in paragraphs 1 (PMID: 8297701) and 2 (PMID: 9220309) do not provide sufficient
information to determine if they agree with each other. However, after decontextualization (additional
information marked by underline), it becomes more obvious that both statements agree that human leukocyte
antigen DR4 is not associated with idiopathic dilated cardiomyopathy.

4.4.1 Contradiction Detection in Scientific Claims

Identifying contradictions between claims in scientific documents is crucial for assessing the validity of the
source of knowledge [169], [189]–[191]. Given that the scientific claims might be embedded in a rich context,
as illustrated in Figure 4.4, decontextualizing claim sentences—especially those whose meaning is influenced
by surrounding information—is crucial.

Cardiology dataset consists of questions paired with scientific claim sentences that either support
(labeled as "yes") or refute ("no") the claim presented in the question [169]. The cardiology disease-related
questions are manually written by annotators, and the scientific claim sentences are extracted from the
PubMed abstracts. We transform the corpus into claim-to-claim pairs, labeling the pair as "non-contradict"
if both claims make the same assertion about a question and "contradict" if they differ, aligning with the
setting of prior works [192], [193]. A sample from the dataset is presented in Figure 4.4.

We adopt the model achieving state-of-the-art performance on contradiction detection of scientific claims
as the baseline [192], [193]. Specifically, the model forms the sentence pairs as "[CLS] sentence 1 [SEP]
sentence 2" and predicts the label based on the "[CLS]" token with BERT model as backbone [194].

4.4.2 Fact Verification

Fact verification of statements depends on evidence sentences to support or refute a claim [195], [196].
However, because these sentences are often situated within nuanced contexts, their meaning can be influenced
by surrounding information, as illustrated in Figure 4.1, highlighting the importance of decontextualization
in ensuring that evidence sentences are accurately represented.

Rawfc [162] and SciFact [36] are fact verification datasets that include annotator-written claims, factual
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document sources, and sentence-level evidence from documents to support or refute the claims. We use these
two datasets to construct claim-evidence pairs, where each claim could be associated with multiple pieces of
evidence and labeled as ["true", "false", "half"] (Rawfc), or ["support", "contradict", "not_enough_info"]
(SciFact).

We use the model that predicts labels based on claim – single-evidence sentence pairs [36] as our baseline
for fact verification. Unlike other approaches that incorporate contextual information for better perfor-
mance [37], [41], [197], this model focuses on single sentences, making it ideal for comparing original and
decontextualized sentences. To train the model, we break down the claim–evidence pairs into separate pairs,
each consisting of one claim and one evidence sentence, assuming the label for the separated pair aligns with
the original claim–evidence pair. We decontextualize the evidence sentences that originate from rich context.
To evaluate the performance of the models, we aggregated the predictions from all separate pairs to label
each claim through a majority vote.

4.5 Experiments

4.5.1 OpenIE Datasets

We utilize OpenIE datasets from diverse domains to support structured knowledge extraction with in-context
learning:

CaRB is a sentence-level dataset for OpenIE [198] that builds upon the OIE2016 dataset [199], which
consists of sentences from news articles and encyclopedias. While sharing the same underlying data, CaRB
improves the label quality of OIE2016 by crowd-sourcing annotation.

DocOIE is a document-level dataset for OpenIE, containing data from health-care and transportation
domains [185]. It addresses the gap in document-level context-aware extraction of relational tuples within
the OpenIE domain.

BioRED is a document-level dataset for biomedical information extraction [200]. This biomedical-
domain-specific dataset, which broadly encompasses potential relation types among biomedical entities—including
’positive correlation,’ ’negative correlation,’ ’association,’ ’bind,’ ’comparison,’ ’cotreatment,’ ’conversion,’
and ’drug interaction’—is included to analyze the impact of domain discrepancy between the OpenIE demon-
stration in LLM-DeCon and the downstream data on the decontextualization outcomes.

We also created One-shot document-level OpenIE annotations for a randomly selected sample from each
benchmark dataset. Due to the limited availability of document-level OpenIE datasets, manually annotating
a sample from the same domain as the downstream task helps to bridge the domain gap between the OpenIE
demonstrations and the queries formulated for the current task.

4.5.2 Decontextualization Baselines

T5 model is employed by previous work as a sequence-to-sequence backbone, fine-tuned on a manually
annotated decontextualization dataset [43]. We adopt this model as the decontextualization baseline in our
study.

Full-context is included as an additional decontextualization baseline in our study to compare model
performance trained on the decontextualized sentences versus the entire context. Specifically, given the
original sentence Si, the decontextualized sentence is presented as "Full text: <full text>. Target sentence:
Si".
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4.5.3 Experimental Setup

We choose Llama-3.1-8B [201] as our base LLMs for extracting structural knowledge. Additionally, we
employ Ministral-8B-Instruct [202] to compare different LLMs’ effectiveness in supporting the LLM-DeCon
framework for structured knowledge extraction. All experiments are conducted on a NVIDIA V100 GPU
with 32GB of RAM.

4.6 Results and Discussion

4.6.1 Decontextualization

Tasks & Datasets

Contradiction

Detection
Fact Verification

Cardiology Rawfc SciFact

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

Baseline models

(trained on original sentences)
0.857 0.835 0.455 0.416 0.854 0.829

+ trained on

T5 decontextualized sentences
0.873 0.861 0.455 0.419 0.854 0.839

+ trained on full context 0.829 0.824 0.410 0.356 0.642 0.391

+ trained on

LLM-Decon

decontextualized

sentences

CaRB 0.863 0.858 0.483 0.454 0.837 0.817

DocOIE 0.911 0.905 0.455 0.425 0.854 0.833

BioRED 0.888 0.879 0.410 0.378 0.870 0.852

One-shot 0.875 0.869 0.477 0.439 0.870 0.857

Table 4.1: Overall performance. The LLM-DeCon presented in this table uses Llama-3.1-8B as the backbone.

Table 4.1 presents the performance of the models trained on original versus decontextualized sentences.
From the table, we observe:

(1) Models trained on decontextualized sentences generated by the LLM-DeCon framework with OpenIE
datasets from domains similar to the downstream tasks (e.g. CaRB for Rawfc) achieve the highest micro
and macro F1 performance across all evaluation benchmarks. This demonstrates the effectiveness of our
proposed LLM-DeCon framework in decontextualization. The performance gains by decontextualization
compared to baseline models (e.g. Cardiology baseline micro F1: 0.857, LLM-Decon micro F1: 0.911)
highlights the importance of decontextualizing sentence extracted from rich context before making further
predictions.

(2) Models trained on the decontextualized sentences generated by a T5 model finetuned on the human-
annotated decontextualization dataset [43] show no or slight improvement over the baselines (e.g. micro and
macro F1 on SciFact as 0.837 and 0.817 respectively, lower than the baseline as 0.854 and 0.829). The
results indicate that the straightforward decontextualization in the dataset limits the ability of the fine-tuned
model to determine the appropriate contextual extent for a sentence from rich context.
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Model
Cardiology SciFact

Micro F1 Macro F1 Micro F1 Macro F1

LLM-DeCon with BioRED demonstration 0.888 0.879 0.870 0.852

w/o Embedding-based Demonstration Selection 0.882 0.875 0.865 0.851

w/o Demonstration 0.859 0.847 0.854 0.839

w/o Sentence Alignment to structured knowledge 0.779 0.773 0.809 0.829

Table 4.2: Ablation Study

(3) The selection of OpenIE datasets in the LLM-DeCon framework impacts the decontextualization
quality. Using OpenIE datasets from similar domains as the decontextualization target improves the quality
of generated decontextualized sentences. For example, DocOIE, which contains textual data from the health-
care domain, helps the contradiction detection task based on Cardiology dataset (containing cardiology-
related scientific abstracts, a sub-domain of the biomedical domain) to achieve the highest micro and macro
F1 scores of 0.911 and 0.905, respectively.

In contrast, the decontextualization using OpenIE datasets from the different domains as demonstrations
in LLM-DeCon leads to declines in downstream task performance. For example, CaRB, which primarily
consists of data from news, aligns well with the dataset Rawfc, which contains data of news or social media
(achieving best micro and macro F1 scores 0.483 and 0.454 respectively) but not with scientific text-focused
tasks such as SciFact (achieving decreased micro and macro F1 0.837 and 0.817 respectively compared to
baseline).

(4) Models trained on decontextualization outcomes generated by LLM-DeCon with the manually anno-
tated OpenIE demonstrations—created by a sample random-selected from each dataset and annotated with
human expertise—achieve first or second-best performance on fact verification datasets, and the third-ranked
performance on claim contradiction task. These results show the effectiveness of manual OpenIE annota-
tions in bridging the domain gap between demonstrations and queries in the in-context learning prompt for
improved decontextualization.

(5) Incorporating full context leads to a decline in model performance, as indicated by that models
trained on sentences with full context perform the worst across all settings. This highlights the importance of
finding a balance—providing enough information for a sentence to stand alone from context while minimizing
contextual bias that could distort original sentence representations.

4.6.2 Ablation Study

We conduct ablation studies on Cardiology and SciFact to evaluate the impact of different LLM-
DeCon components using the OpenIE dataset generated from BioRED. Table 4.2 presents the results.
"w/o Embedding-based Demonstration Selection" replaces similarity-based demonstration selection with
random selection; "w/o Demonstration" removes demonstrations from the in-context learning prompt: "w/o
Sentence Alignment to Structured Knowledge" excludes sentence alignment procedure, incorporating all
extracted structured knowledge from the context for a single sentence decontextualization.

The performance drop in the "w/o Demonstration" setting underscores the importance of including
demonstrations in the prompt to guide the LLM toward generating task-specific results. Similarly, the drop
in the "w/o Sentence Alignment" setting highlights that incorporating all extracted knowledge from context
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can introduce additional bias into the decontextualized results. However, the model trained under the "w/o
Embedding-based Demonstration Selection" setting performs comparably to the full model, indicating that
embedding-based demonstration selection plays a relatively minor role in LLM-DeCon.

4.6.3 LLM Comparison

LLM-Decon

Ministral-8B-Instruct

Cardiology SciFact

MicF1 MacF1 MicF1 MacF1

CaRB 0.863 0.855 0.820 0.820

DocOIE 0.898 0.891 0.878 0.850

BioRED 0.901 0.896 0.859 0.846

Manual 0.865 0.857 0.870 0.854

Table 4.3: LLM Comparison

Table 4.3 compares the performance of Llama-3.1-8B and Ministral-8B-Instruct on Cardiology and Sci-

Fact. The results show that the Ministral model performs comparably with the Llama model in support-
ing structured knowledge extraction, which demonstrates the generalizability of our proposed LLM-DeCon
framework across LLMs. Additionally, the consistently lowest performance observed with CaRB for both
models further confirms that selecting an OpenIE dataset from a domain different from the downstream task
negatively impacts decontextualization quality.

4.6.4 Error Analysis

We present a sentence decontextualization sample in Figure 4.5. The T5 model rewrites the original sentence
by removing "therefore" but fails to incorporate additional context that could enrich the knowledge and
support the claim. In contrast, our LLM-DeCon model successfully integrates contextual information into
the decontextualized output, providing sufficient support for the given claim.

4.7 Conclusions

This work introduced LLM-DeCon, a framework leveraging LLM-supported structured knowledge extrac-
tion via OpenIE to enhance sentence decontextualization. Our approach improves adaptability and handles
complex contextual dependencies for decontextualization. We also established an automatic evaluation
benchmark, showing that LLM-DeCon achieves strong performance in claim and evidence sentence decon-
textualization. The results highlight the potential of structured knowledge extraction in improving decon-
textualization. Future research can refine evaluation metrics and explore the framework’s adaptability in
broader domains.
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Figure 4.5: Decontextaulization sample by T5 and LLM-DeCon on SciFact.

4.8 Future Work

In the current work, we have explored how to use LLMs to decontextualize sentences. In the next step, we
hope to to apply this method to a downstream task: identifying and analyzing conflicting claims in biomedical
publications. Scientific claims are often shaped by their surrounding context—such as experimental design or
research objectives—which can make cross-study comparisons challenging. By enriching claim sentences with
essential contextual information, decontextualization can improve their interpretability in isolation. This, in
turn, may allow for more accurate and meaningful comparisons of claims across different studies. Motivated
by this potential, we will focus on leveraging decontextualized claim sentence to support the detection of
contradictions between claims reported across multiple articles.

We plan to develop a multi-step methodology to achieve the goal of detecting claim contradictions across
biomedical articles:

(a) Select a representative subset of articles from the PubMed Central Open Access dataset (around 200
publications), covering a predefined list of research topics (e.g. breast cancer and Alzheimer’s disease)

(b) The argument structure detection tool developed in Chapter 2 will be utilized to detect the claim
sentences from a given article.

(c) Utilize a topic clustering model to group articles that present claims on similar topics.
(d) The decontextualization method developed in this chapter (Chapter 4) will be utilized to enrich the

claim sentences with enough context to make them interpretable out of context.
(e) The sentence pair classification model will be developed using existing, widely adopted biomedical nat-

ural language inference datasets (e.g., MedNLI [203]) to enable effective detection of contradictions between
sentence pairs.

(d) The sentence-pair classification model developed for contradiction detection in the previous step is
then utilized to detect the contradictions among the decontextualized claims from step (b).

(e) The quality of the automatically detected contradictions across articles will be checked manually.
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Chapter 5

Timeline for the Remaining Work

Figure 5.1 shows the proposed timeline for the future works described at the end of Chapters 2-4. I plan
to complete the works by May 2026, focusing on the remaining tasks in the next 10 months, while leaving
dedicated time for the dissertation writing for the whole year. The final dissertation is expected to be
completed in May 2026.

June July Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May

Chapter 2

Full-text Collection &

Rule-based Argument Labeling

Checking and Improving Quality

of Rule-based Annotation Results

Chapter 3

Data Collection (from Different Years)

SAL Identification Analysis Over Years

SAL Type Classification Analysis Over Years

Chapter 4

Article Collection and Clustering

Claim Detection and Decontextualization

Contradiction Detection among Claims

Contradiction Detection Quality Checking by Human

Dissertation Writeup

Dissertation Defense

Table 5.1: Timeline for the remaining work.

As for publications, the current contents in the Chapters 2-4 are either published or under review. I also
aim to write follow-up papers as described in the future work section in each chapter.
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