Report proposes standards for sharing data and code used in computational studies

Reporting new research results involves detailed descriptions of methods and materials used in an experiment. But when a study uses computers to analyze data, create models or simulate things that can’t be tested in a lab, how can other researchers see what steps were taken or potentially reproduce results?

A new report by prominent leaders in computational methods and reproducibility lays out recommendations for ways researchers, institutions, agencies and journal publishers can work together to standardize sharing of data sets and software code. The paper "Enhancing reproducibility for computational methods" appears in the journal Science.

"We have a real issue in disclosure and reporting standards for research that involves computation – which is basically all research today," said Victoria Stodden, a University of Illinois professor of information science and the lead author of the paper. "The standards for putting enough information out there with your findings so that other researchers in the area are able to understand and potentially replicate your work were developed before we used computers."

[video:https://youtu.be/94qM6tnDtcQ]

"It is becoming increasingly accepted for researchers to value open data standards as an essential part of modern scholarship, but it is nearly impossible to reproduce results from original data without the authors' code," said Marcia McNutt, the president of the National Academy of Sciences and a co-corresponding author of the study. "This policy forum makes recommendations to enable practical and useful code sharing."

Sharing complete computational methods – data, code, parameters and the specific steps taken to arrive at the results – is difficult for researchers because there are no standards or guides to refer to, Stodden said. It's an extra step for busy researchers to incorporate into their reporting routine, and even if someone wants to share their data or code, there are questions of how to format and document it, where to store it and how to make it accessible.

The report makes seven specific recommendations, such as documenting digital objects and making them retrievable, open licensing, placing links to datasets and workflows in scientific articles, and reproducibility checks before publication in a scholarly journal.

The authors hope that disclosing computational methods will not only allow other researchers to verify and reproduce results, but also to build upon studies that have been done, such as performing different analyses with a dataset or using an established workflow with new data.

"Things like how you prepped your data – what you did with outliers or how you normalized variables, all the things that are standard in data analysis – can make a big impact on results," Stodden said. "Some researchers make code and data accessible on point of principle, so it's possible. But it takes time. We know it's hard, but in this report we're trying to say in a very productive and positive way that data, code and workflows need to be part of what gets disclosed as a scientific finding."

Research Areas:
Tags:
Updated on
Backto the news archive

Related News

Tibebu joins the School

The iSchool is pleased to announce that Haileleol Tibebu joined the faculty as a teaching assistant professor on January 1, 2025. His research and teaching interests include responsible AI, AI policy and governance, algorithmic fairness, and the intersection of technology and society.

Haileleol Tibebu

Rhinesmith joins the faculty

The iSchool is pleased to announce that Colin Rhinesmith joined the faculty as a visiting associate professor on January 1, 2025. His position will become permanent following approval by the University of Illinois Board of Trustees. He previously served as founder and director of the Digital Equity Research Center at the Metropolitan New York Library Council.

Colin Rhinesmith

SafeRBot to assist community, police in crime reporting

Across the nation, 911 dispatch centers are facing a worker shortage. Unfortunately, this understaffing, plus the nature of the job itself, leads to dispatchers who are often overworked and stressed. Meanwhile, when community members need to report a crime, their options are to contact 911 for an emergency or, in a non-emergency situation, call a non-emergency number or fill out an online form. A new chatbot, SafeRBot, designed and developed by Associate Professor Yun Huang, Informatics PhD student Yiren Liu, and BSIS student Tony An seeks to improve the reporting process for non-emergency situations for both community members and dispatch centers.

Yun Huang

Hoiem receives Schiller Prize for “Education of Things”

Associate Professor Elizabeth Hoiem has won the 2025 Justin G. Schiller Prize from The Bibliographical Society of America for her book, The Education of Things: Mechanical Literacy in British Children's Literature, 1762-1860 (University of Massachusetts Press). The prize, which recognizes the best bibliographical work on pre-1951 children's literature, includes a cash award of $3,000 and a year's membership in the Society. 

Elizabeth Hoiem

Chan authors new book connecting eugenics and Big Tech

Associate Professor Anita Say Chan has authored a new book that identifies how the eugenics movement foreshadows the predatory data tactics used in today's tech industry. Her book, Predatory Data: Eugenics in Big Tech and Our Fight for an Independent Future, was released this month by the University of California Press and featured in the news outlets San Francisco Chronicle and Mother Jones.

Anita Say Chan