School of Information Sciences

He receives grant to improve performance of deep learning models

Jingrui He
Jingrui He, Professor and MSIM Program Director

Associate Professor Jingrui He has been awarded a two-year, $149,921 grant from the National Science Foundation (NSF) to improve the performance of deep learning models. For her project, "Weakly Supervised Graph Neural Networks," she will focus on the lack of labeled data in Graph Neural Networks (GNNs), a deep learning method designed to perform inference on data described by graphs.

A graph is a structured way to represent data, with nodes representing entities and edges representing the relationships between these entities. GNNs provide an easy way to conduct node-level, edge-level, and graph-level prediction via machine learning. However, they usually require a large amount of label information to train the model parameters. According to He, the lack of labeled data in graphs can render many existing deep learning models ineffective in achieving the desired performance. Her new project involves a work-around so that GNNs can use unlabeled data and other relevant information.

"For example, in fraud detection, the number of known fraudulent transactions is usually very small compared to the total number of transactions, hence the lack of labeled data. Most existing GNN models tend to suffer from such label scarcity. In my new project, we aim to address this issue by leveraging weak supervision or additional information (besides the limited label information), such as labeled data from other related applications and/or access to a domain expert, in order to compensate for the lack of labeled data," said He.

In addition to fraud detection, areas such as agriculture and cancer diagnosis could also benefit from this research. He’s project will lead to a suite of new models, algorithms, and theories for constructing high-performing GNNs with weak supervision, and for understanding the benefits of weak supervision with respect to the model generalization performance and sample complexity.

He's general research theme is to design, build, and test a suite of automated and semi-automated methods to explore, understand, characterize, and predict real-world data by means of statistical machine learning. She received her PhD in machine learning from Carnegie Mellon University.

Updated on
Backto the news archive

Related News

Park participates in MIT Rising Stars in EECS 2025

Postdoctoral Research Associate Hyanghee Park was selected to participate in the 2025 Rising Stars in EECS Workshop hosted by MIT and Boston University. The intensive, two-day workshop supports women graduate students, postdocs, and recent PhDs pursuing academic careers in electrical engineering, computer science, and related fields. 

Hyanghee Park

Jiang defends dissertation

PhD candidate Xiaoliang Jiang successfully defended his dissertation, "Identifying Place Names in Scientific Writing Based on Language Models, Linked Data, and Metadata," on November 10. 

Xiaoliang Jiang

Paper by He's lab honored at ICCV 2025 workshop

Professor Jingrui He's lab received an outstanding paper award at the Multi-Modal Reasoning for Agentic Intelligence Workshop, which was held during the International Conference on Computer Vision (ICCV 2025) last month in Honolulu, Hawaii. 

Jingrui He

Vaez Afshar named APT Student Scholar

Informatics PhD student Sepehr Vaez Afshar has been named a Student Scholar by the Association for Preservation Technology (APT). Each year, around ten students are selected worldwide for the scholarship program based on the quality and innovation of their research abstracts, as well as their contribution to the field of preservation technology. Scholars are paired with mentors from the APT College of Fellows, prepare and present their research during the association's annual conference, and enjoy opportunities for long-term professional networking and mentorship within the preservation community.

Sepehr Vaez Afshar

iSchool well represented at ASIS&T 2025

iSchool faculty, staff, and students will participate in the 88th Annual Meeting of the Association for Information Science and Technology (ASIS&T), which will be held on November 14-18 in Arlington, Virginia. ASIS&T will also host a Virtual Satellite Meeting on December 11-12. 

School of Information Sciences

501 E. Daniel St.

MC-493

Champaign, IL

61820-6211

Voice: (217) 333-3280

Fax: (217) 244-3302

Email: ischool@illinois.edu

Back to top