Illinois leads $25 million alliance to develop Internet of Battlefield Things

Jana Diesner
Jana Diesner, Associate Professor and PhD Program Director

Jana Diesner, assistant professor and PhD program director at the iSchool, is co-principal investigator on a multi-institutional initiative funded by the Army Research Lab to enable new predictive battlefield analytics and services. Diesner will collaborate on the project with researchers from Computer Science and Electrical and Computer Engineering.  

On the battlefields of tomorrow, humans and technology will work together in a seamless, cohesive network, giving soldiers a competitive edge and keeping troops and civilians out of harm's way.

The University of Illinois at Urbana-Champaign has been selected to lead a $25 million initiative to develop the scientific foundations of a next-generation Internet of Battlefield Things (IoBT), designed to enable new predictive battlefield analytics and services. The "Alliance for IoBT Research on Evolving Intelligent Goal-driven Networks (IoBT REIGN)," funded by the Army Research Lab, includes collaborators from ARL, Carnegie Mellon University, University of California, Berkeley, University of California, Los Angeles, University of Massachusetts, University of Southern California, and SRI International. The funding covers the first five years of a potential 10-year effort.

In the future, military operations will rely less on human soldiers and more on interconnected technology, leveraging advancements in unmanned systems and machine intelligence in order to achieve superior defense capabilities. The IoBT will connect soldiers with smart technology in armor, radios, weapons, and other objects, to give troops "extra sensory" perception, offer situational understanding, endow fighters with prediction powers, provide better risk assessment, and develop shared intuitions.

"This award enables a true collaboration between researchers at ARL and researchers in academia and industry to change the status quo in smart battlefield services," said Tarek Abdelzaher, the academic lead of the Alliance and a professor of computer science at Illinois. "Through ARL's Collaborative Research Alliance model, we can change our fundamental understanding of what's possible when computers, sensors, data, weapons, soldiers, wearables, and media analytics are networked to empower new defense capabilities."

iobtgraphic_0.jpg?itok=ecKGg_fK In a battle environment, human operators must adapt to unexpected changes. IoBT researchers aim to create a cyber network of "things" that adapt as the mission evolves. That means that a system will have to analyze its available resources and re-assemble itself to best meet requirements for the present execution.

In addition, these systems must be self-aware and able to reason about their goals, state, vulnerabilities, and other characteristics in order to meet a commander's intent. They have to be able to counteract and mitigate disruptions and attacks in near real-time and provide stability under uncertain conditions.

The IoBT system must also have cognitive abilities and be able to fuse data from technology with data from humans. It will have to function in a continuous state of learning at multiple time-scales, for example, learning from previous actions while acting in the present and anticipating future moves. As a result, the system will be able to provide commanders with the most relevant information at any given time.

"While commercial IoTs provide some of this capability, it is not challenged in the same manner as on the battlefield," said Dr. Stephen Russell, ARL's Battlefield Information Processing Branch Chief and the government lead of the Alliance. "The 'B' in the IoBT is a key focus."

These activities must be reliable and should appropriately leverage all networks – blue, gray, and red – which have varying degrees of trustworthiness. Blue are secure and military-owned networks; gray are often civilian networks with uncertain trustworthiness; and red are adversarial networks.

This effort to understand and exploit the unique capabilities of networked battlefield systems is an interdisciplinary problem that brings together researchers in cyber-physical computing, information theory, security, formal methods, machine learning, networking, control, and cognitive science, among other disciplines.

An integral part of the alliance is the collaboration between ARL and the academic and industry researchers.

"Illinois is proud to lead this effort, which will not only advance military science, but also could lead to breakthroughs that impact many other fields," said Andreas Cangellaris, Dean of Illinois' College of Engineering. "The excellence brought forth by this team could transform 21st century technology."

Tags:
Updated on
Backto the news archive

Related News

Survey of U.S. academic libraries documents COVID-19 pandemic responses

When universities began closing their campuses and going to online classes in response to the COVID-19 pandemic, academic librarians were faced with questions about how those decisions would affect libraries and whether to close their doors or restrict access. "People are looking to best practices in the field, but also to what actions their colleagues and peers are taking and how they are thinking about this," said Affiliate Professor Lisa Janicke Hinchliffe, professor and coordinator for information literacy services and instruction in the University Library.

Lisa Janicke Hinchliffe

What challenges are professors and college students facing with the migration of classes online?

Most universities around the country have ended classroom instruction, told students to go home, and asked professors to continue teaching their courses online, to help stop the spread of the new coronavirus. Melissa Wong, an adjunct lecturer at the iSchool, has been teaching online since 2001. Her online courses include e-learning and instructional strategies and techniques. She recently gave two webinars about moving courses online.

Melissa Wong

Stodden discusses cyberinfrastructure at National Academies workshop

Associate Professor Victoria Stodden presented her research at the National Academies of Sciences, Engineering, and Medicine workshop, "Opportunities for Accelerating Scientific Discovery: Realizing the Potential of Advanced and Automated Workflows," which was held virtually on March 16-17. 

Victoria Stodden

iSchool participation in iConference 2020

The following iSchool faculty, staff, and students will participate in iConference 2020, which will be held virtually on March 23-27. The annual event brings together scholars, researchers, and information professionals to share insights on critical information issues. The theme of this year's conference is "Sustainable Digital Communities."

He coauthors book on user behavior modeling

Associate Professor Jingrui He and Arun Reddy Nelakurthi, senior engineer in machine learning research at Samsung Research America, have coauthored a new guide to user behavior modeling. Their book, Social Media Analytics for User Behavior Modeling: A Task Heterogeneity Perspective, was recently published by CRC Press.

Jingrui He