An informatics approach helps better identify chemical combinations in consumer products

Catherine Blake
Catherine Blake, Professor and Associate Dean for Academic Affairs

By using products such as soap, shampoo, body lotion, toothpaste and makeup, the average consumer may be exposed to dozens of chemicals each day. It's not easy, though, to know exactly what is in many consumer products or what potential risks they pose, either individually or in combination.

A doctoral student and a professor in the University of Illinois School of Information Sciences are using an informatics approach to help prioritize chemical combinations for further testing by determining the prevalence of individual ingredients and their most likely combinations in consumer products.

Doctoral student Henry Gabb and professor Catherine Blake published the results of the first phase of their work in Environmental Health Perspectives, a journal of the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

People are exposed to significantly higher levels of chemicals now than in the past from many sources, including consumer products.

"We are, in effect, test subjects in an uncontrolled biochemistry experiment. This has become an accepted, or perhaps ignored, trade-off of life in modern society," Gabb said.

In order to identify the chemicals present in consumer products, Gabb used a web-scraping program to gather product names, categories and ingredient lists from online retail sites such as Drugstore.com. The database he created includes nearly 39,000 products and more than 32,000 ingredient names.

Once he had information on the ingredients in consumer products, he had to solve the problem of chemical synonymy – the use of different names for the same substance.

"The same chemical can appear on multiple product labels under many different names. Unless you can resolve them to a unique chemical, you don't really know what you're counting," Gabb said. For example, according to the PubChem Compound database from the National Library of Medicine, wintergreen oil is another name for methyl salicylate, a suspected endocrine disruptor.

Gabb and Blake targeted 55 potential endocrine-disrupting and asthma-associated chemicals from a prior study that used gas chromatography-mass spectrometry analysis to measure the levels of these chemicals in consumer products. They found 30 percent of the products in their database contained at least one of the 55 target chemicals, and 13 percent contained more than one.

The informatics approach allows the researchers to look at many more products and detect many more chemicals than the gas chromatography-mass spectrometry approach, which is limited by the time it takes to prepare samples and run the experiments, among other things. However, the informatics approach is limited to what is actually listed on product labels, which are not always complete. Gas chromatography-mass spectrometry can identify chemicals that are not listed on a product label or even part of the product formulation, such as "chemicals that leach from the product packaging, degradation products or other impurities," Gabb said. The researchers said the two approaches should be considered complementary.

The initial informatics analysis considered chemical combinations within the same product, but combined exposure also occurs when several products are used in a given timeframe.

"This work provides another piece of the environmental-exposure puzzle and, unlike our genetic material, we can easily change our product usage," Blake said. "The combination of genetic susceptibility and individualized cumulative exposure – not just to other chemicals in consumer products, but from other sources such as air quality – empowers people to make informed decisions about changing the factors that directly influence their health outcomes."

Gabb and Blake hope their informatics approach can help prioritize testing based on the likelihood of exposure. They have started on the next phase of their research, in which they will expand their analysis from the 55 target chemicals in the first phase of the project to look at thousands of chemicals in the second phase.

They'll also study combinations of chemicals from multiple products based on actual consumer usage, rather than looking at products in isolation. They will use a dataset of consumer usage patterns, detailing what products are used and how often. The data can tell the researchers the chemicals and combination of chemicals consumers are being exposed to in a typical day or week.

Researchers can further prioritize which chemicals to study by also considering retention, or how the product is used. For example, shampoo and soap are rinsed off the body right away, while lotion is left on. Toothpaste and other products that come in contact with mucous membranes will likely result in more absorption of chemicals than a hair product.

Gabb and Blake's analysis also illustrates the difficulty consumers have in deciding which products to use or avoid. Manufacturers don't have to disclose the ingredients that produce fragrance and flavor in their products if those mixtures are considered proprietary. In such cases, the label would list "fragrance" or "flavor" rather than the specific ingredients. On the other hand, a label might list the chemicals that contribute to a fragrance, but not use the word "fragrance," leading a consumer to believe he or she is buying a fragrance-free product. This, in addition to chemical synonymy, makes a case for amending the Fair Packaging and Labeling Act to standardize ingredient nomenclature, at least for ingredients that are suspected of being harmful, Gabb said.

Gabb emphasized that the study examines the presence of potentially harmful chemicals (as determined by various authoritative sources like the EPA and NIH) in consumer products, but that it makes no value judgments regarding the safety of the chemicals themselves. His immediate goal is simply to help toxicologists better prioritize which chemicals and chemical combinations should be subjected to cumulative risk assessments.

Updated on
Backto the news archive

Related News

Wang group to present at BigData 2024

Members of Associate Professor Dong Wang's research group, the Social Sensing and Intelligence Lab, will present their research at the 2024 IEEE International Conference on Big Data (BigData 2024), which will be held from December 15-18 in Washington, D.C. BigData 2024 is the premier venue to present and discuss progress in research, development, standards, and applications of topics in artificial intelligence, machine learning and big data analytics.

Dong Wang

Walters learns history of ATO through archives assistantship

When MSLIS student Deborah Walters was offered a graduate assistantship to work in the Alpha Tau Omega Archives, she viewed it as a "unique opportunity to have a hands-on independent experience in archives" that she couldn't pass up. Alpha Tau Omega (ATO) is a social fraternity that was founded at the Virginia Military Institute in 1865. Its archives are among the national fraternity collections housed at the Student Life and Culture Archives at the University of Illinois.

Deborah Walters

Antwi grateful for Balz Scholarship

MSLIS student Victora Antwi is grateful for the financial support that she has received through the Balz Endowment Fund. An international student from the Mampong-Nsuta in the Ashanti Region, Ghana, Antwi earned her bachelor’s degree in information studies in 2020 from the University of Ghana. 

Victoria Antwi

Illinois researchers examine teens’ use of generative AI, safety concerns

Teenagers use generative artificial intelligence for many purposes, including emotional support and social interactions. A study by University of Illinois Urbana-Champaign researchers found that parents have little understanding of GAI, how their children use it and its potential risks, and that GAI platforms offer insufficient protection to ensure children’s safety.

Yang Wang

Bell receives Fulbright-Hays Fellowship for dissertation fieldwork in Brazil

Little did doctoral candidate Kainen Bell know in 2013 when he was an undergraduate studying abroad in Brazil that the country would play a major role in his future dissertation research. Since his first trip, he has returned to Brazil multiple times, even completing a Fulbright study and working for a community-based organization in the country. Now, Bell is preparing to return again, this time to spend ten months conducting research as a recipient of the prestigious Fulbright-Hays Doctoral Dissertation Research Abroad (DDRA) Fellowship.

Kainen Bell