New project to help scientists mitigate risks of environmental pollutants

Dong Wang
Dong Wang, Associate Professor

In addition to killing insects and weeds, pesticides can be toxic to the environment and harmful to human health. A new project led by Associate Professor Dong Wang and Huichun Zhang, Frank H. Neff Professor of Civil Engineering at Case Western Reserve University, will help scientists mitigate the environmental and ecological risks of pollutants such as pesticides and develop remediation strategies for cleaner water, soil, and air. The researchers have received a three-year, $402,773 National Science Foundation (NSF) grant for their project, "Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments."

According to Wang, of the more than 100,000 synthetic (mostly organic) chemicals, thousands have been released into the environment to become organic chemicals. Examples include pesticides, petroleum hydrocarbons, organic solvents, flame retardants, and pharmaceutical and personal care products.

"To mitigate or assess the risks associated with these contaminants, it is important to understand their fate and transport in the environment, such as biodegradation and sorption on soils/sediments. In both cases, there is a major need for quantitative models that allow prediction of the reactivity of organic contaminants in these processes," he said.

Existing models that are used to predict the reactivity of organic contaminants rely heavily on conventional statistics. For their project, the researchers will develop machine learning models to predict the reactivity of thousands of these contaminants in engineered and natural environments.

"Machine learning models will help environmental scientists to better model the fate and transport of pollutants and predict their degradation rate. With these new models, we can not only design better water treatment and remediation processes but also provide more accurate estimates to help contaminant risk assessment," said Wang.

Wang's research interests lie in the areas of human-centered AI, social sensing, big data analytics, and human cyber-physical systems. His work has been applied in a wide range of real-world applications such as misinformation detection, social network analysis, crowd-based disaster response, intelligent transportation, urban planning, and environment monitoring. He holds a PhD in computer science from the University of Illinois Urbana Champaign.

Updated on
Backto the news archive

Related News

Tibebu joins the School

The iSchool is pleased to announce that Haileleol Tibebu joined the faculty as a teaching assistant professor on January 1, 2025. His research and teaching interests include responsible AI, AI policy and governance, algorithmic fairness, and the intersection of technology and society.

Haileleol Tibebu

Spectrum Scholar Spotlight: Leslie Lopez

Twelve iSchool master's students were named 2024–2025 Spectrum Scholars by the American Library Association (ALA) Office for Diversity, Literacy, and Outreach Services. This “Spectrum Scholar Spotlight” series highlights the School’s scholars. MSLIS student Leslie Lopez graduated from the University of North Texas with a BA in psychology.

Leslie Lopez headshot

Nominations invited for 2024 Downs Intellectual Freedom Award

The School of Information Sciences at the University of Illinois Urbana-Champaign seeks nominations for the 2024 Robert B. Downs Intellectual Freedom Award. The deadline for nominations is March 15, 2025. The award is cosponsored by Sage Publishing.

Rhinesmith joins the faculty

The iSchool is pleased to announce that Colin Rhinesmith joined the faculty as a visiting associate professor on January 1, 2025. His position will become permanent following approval by the University of Illinois Board of Trustees. He previously served as founder and director of the Digital Equity Research Center at the Metropolitan New York Library Council.

Colin Rhinesmith

SafeRBot to assist community, police in crime reporting

Across the nation, 911 dispatch centers are facing a worker shortage. Unfortunately, this understaffing, plus the nature of the job itself, leads to dispatchers who are often overworked and stressed. Meanwhile, when community members need to report a crime, their options are to contact 911 for an emergency or, in a non-emergency situation, call a non-emergency number or fill out an online form. A new chatbot, SafeRBot, designed and developed by Associate Professor Yun Huang, Informatics PhD student Yiren Liu, and BSIS student Tony An seeks to improve the reporting process for non-emergency situations for both community members and dispatch centers.

Yun Huang