New journal article examines vaccination misinformation on social media

Tre Tomaszewski
Tre Tomaszewski
Jessie Chin
Jessie Chin, Assistant Professor

Research conducted by Assistant Professor Jessie Chin's Adaptive Cognition and Interaction Design Lab (ACTION) provided the foundation for an article recently published in the high-impact Journal of Medical Internet Research. PhD student Tre Tomaszewski is the first author on the peer-reviewed article, "Identifying False Human Papillomavirus (HPV) Vaccine Information and Corresponding Risk Perceptions from Twitter: Advanced Predictive Models."

According to the researchers, vaccination uptake rates of the HPV vaccine remain low despite the fact that the effectiveness of the vaccine has been established for over a decade. Their new article addresses how the gap in vaccinations can be traced to misinformation regarding the risks of the vaccine.

"If we can understand the contents of these misconceptions, we can craft more effective and targeted health messaging, which directly addresses and alleviates the concerns found in misconceptions about various public health topics," said Tomaszewski.

Tomaszewski uses the analogy of an outbreak of infectious disease in characterizing the spread of misinformation about vaccination, colloquially called an infodemic. The detection of misinformation is a mitigation method that reduces further spread after an "outbreak" has begun, he said. Understanding the types of concerns people have regarding public health measures, such as HPV vaccination, could lead to improved health messaging from credible sources.

"If we can target root causes—reasons people believe misinformation in the first place—through methods akin to those we devised, health messaging can provide valid information prior to the exposure of misinformation. Continuing the analogy of a disease, this pre-exposure to valid information can act as a psychological 'inoculation' from the known falsehoods," he said. "Of course, while the analogy of misinformation as a disease or epidemic is useful for conceptualizing the problem, it is imperfect and should not be taken too literally, as goes for most analogies."

For their study, the research team used machine learning and natural language processing to develop a series of models to identify and examine true and false HPV vaccine–related information on Twitter. Once a model was developed that could reliably detect misinformation, the researchers could automatically classify messages, creating a much larger data set.

"We were able to extract cause-and-effect statements in a process called 'causal mining.' This resulted in sets of concepts (or misconceptions) related to a given 'cause' term," said Tomaszewski.

The researchers found that valid messages containing "HPV vaccination" often return terms under a category of "effective" (expressing the vaccine efficacy) but also "cancer" (as the vaccine helps prevent cancers which may develop over time due to an HPV infection). They found that HPV vaccine misinformation is linked to concerns of infertility and issues with the nervous system. After the messages were categorized as positive or negative cause-effect statements, the research team found that misinformation strongly favors the negative-leaning, "loss framed" messaging.

"Misinformation tends to be more fear provoking, which is known to capture attention," said Tomaszewski.

This research was funded by the National Institutes of Health (National Cancer Institute). In addition to Tomaszewski and Chin, the research team included Alex Morales (Department of Computer Science, University of Illinois Urbana-Champaign); Ismini Lourentzou (Department of Computer Science, Virginia Polytechnic Institute and State University);  and from the University of Illinois at Chicago, Rachel Caskey (College of Medicine); Bing Liu (Department of Computer Science); and Alan Schwartz (Department of Medical Education).

Updated on
Backto the news archive

Related News

Gore honored in Singapore for community service

BSIS student Saloni Gore is passionate about community service, especially projects related to sustainability and social impact. It is this commitment to making a difference that prompted her to start a project to help provide clean water to rural communities in India and led her from Singapore to the iSchool, where she can learn how to use data and technology to benefit the world.

Saloni Gore

Kilhoffer defends dissertation

Doctoral candidate Zachary Kilhoffer successfully defended his dissertation, "Human Factors in the Standardization of AI Governance: Improving the Design of Risk Management Standards for Ethical AI," on January 24, 2025.

Zak Kilhoffer - square

Han defends dissertation

Doctoral candidate Kanyao Han successfully defended his dissertation, "Natural Language Processing for Supporting Impact Assessment of Funded Projects," on January 7, 2025.

Kanyao Han

Pettigrew finds balance as a student-athlete

Isiah Pettigrew started wrestling in his junior year of high school in Palatine, Illinois. He advanced in the sport quickly, placing fourth in his weight class at the state wrestling tournament in his senior year. He signed on with the Illini Wrestling team in 2020 as a freshman and has been wrestling throughout his academic career, which includes earning a bachelor's degree and beginning a master's degree at the iSchool.

Isiah Pettigrew

Get to know Cadence Cordell, MSLIS student

Cadence Cordell was inspired by her undergraduate work experience to pursue a degree in library and information science. She followed in her mother’s footsteps by selecting the iSchool for her MSLIS. After completing a recent research poster presentation, she combined her scholarly pursuit with her hobby by sewing her fabric poster into a squirrel plushie.

Cadence Cordell